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 A B S T R A C T

By the Lindeberg–Lévy central limit theorem, standardized partial sums of a sequence of 
mutually independent and identically distributed random variables converge in law to the 
standard normal distribution. It is known that mutual independence cannot be relaxed to 
pairwise independence, nor even to triplewise independence. Counterexamples have been 
constructed for most marginal distributions: a recent construction works under a condition 
which excludes certain probability distributions with atomic parts, in particular almost all 
distributions on a fixed finite set. In the present paper, we show that this condition can be 
lifted: for any probability distribution 𝐹  on the real line, which has finite variance and is 
not concentrated in a single point, there exists a sequence of triplewise independent random 
variables with distribution 𝐹 , such that its standardized partial sums converge in law to a 
distribution which is not normal. There is also scope for extension to 𝑘-tuplewise independence.

1. Introduction

For a sequence of mutually independent and identically distributed random variables 𝑋1, 𝑋2,… with E𝑋1 = 𝜇 and Var(𝑋1) = 𝜎2, 
where 0 < 𝜎 < ∞, it is known that the standardized partial sums 

𝑆𝑛 ∶=
1

𝜎
√

𝑛

( 𝑛
∑

𝑘=1
𝑋𝑘 − 𝑛𝜇

)

(1)

converge in law to the standard normal distribution: this is known as the Lindeberg–Lévy central limit theorem: see Lindeberg (1922) 
and Lévy (1925). It is also known that mutual independence cannot in general be relaxed to the weaker pairwise independence, nor 
can it even be relaxed to triplewise independence. In general, 𝐾-tuplewise independence is defined as follows:

Definition 1.  Let 𝐾 ∈ {2, 3, 4,…}. An indexed family of random variables 𝑋𝑖, 𝑖 ∈ 𝐼 , is 𝐾-tuplewise independent if the random 
variables 𝑋𝑖1 , 𝑋𝑖2 ,… , 𝑋𝑖𝐾  are mutually independent for any 𝐾-tuple of distinct indices 𝑖1, 𝑖2,… , 𝑖𝐾 .

Counterexamples can be traced back to Révész and Wschebor (1965), who provide a sequence of pairwise independent and 
identically distributed random variables taking the values 1 and −1 with equal probabilities. By Theorem 1 ibidem, the absolute 
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values of the (unstandardized) partial sums of that sequence can be bounded by a fixed random variable, so that their standardized 
counterparts 𝑆𝑛 converge in distribution to zero. Avanzi et al. (2021) provide a survey of further constructions and construct a broad 
family of counterexamples for pairwise independence. Pruss (1998) succeeds to construct a counterexample to the central limit 
theorem which is a sequence of 𝐾-tuplewise independent and identically distributed random variables, where 𝐾 can be arbitrary 
and the marginal distribution can be any symmetric distribution with finite variance. Bradley and Pruss (2009) construct a sequence 
of 𝐾-tuplewise independent and identically distributed random variables, which is strictly stationary.

Boglioni Beaulieu et al. (2021) modify the construction of Avanzi et al. (2021) to one which is based on a suitable sequence of 
graphs, each graph giving a family of 𝐾-tuplewise independent and identically distributed random variables. The random variables 
obtained from all graphs can be arranged into an array, each graph giving one row. They provide an increasing sequence of 
graphs giving triplewise independent rows and standardized row sums converging in law to a variance-gamma distribution, which 
is not normal: see Subsection 4.1 of Boglioni Beaulieu et al. (2021). From that array, a sequence can be extracted, such that its 
standardized partial sums do not converge to a normal distribution because it has a subsequence which converges to the variance-
gamma distribution. Under some additional conditions, it can be shown that the entire sequence converges to the same distribution: 
see Lemma  8.

In the present paper, we focus on the constructions provided by Avanzi et al. (2021) and by Boglioni Beaulieu et al. (2021). 
They both allow for a broad choice for the (common) distribution of the summands 𝑋1, 𝑋2,… Indeed, taking 𝑊  to be a generic 
random variable with this distribution, they work under the following condition quoted below:

Condition 2.  There exists a Borel set 𝐴 ⊆ R, such that:
• P(𝑊 ∈ 𝐴) = 𝓁−1 for some integer 𝓁 ≥ 2;
• E(𝑊 ∣ 𝑊 ∈ 𝐴) ≠ E(𝑊 ∣ 𝑊 ∉ 𝐴).

Although this restriction is relatively mild, not all probability distributions on the real line fit it. In particular, discrete 
distributions in the ‘‘general position’’ are excluded, concretely any discrete distribution which is non-trivial and with point 
probabilities summing up only to 0, 1 or an irrational number; compare Remark 2 in Avanzi et al. (2021).

However, we show that Condition  2 can be lifted: the constructions provided by Avanzi et al. (2021) and Boglioni Beaulieu et al. 
(2021) can be adapted so that they allow for any distribution on the real line which makes sense. Indeed, instead of Condition  2, 
we only need that the distribution of 𝑊  can be represented as a suitable mixture of two distributions. The following assertion states 
that this is true for all distributions which make sense (and we only need the case 𝜏 = 𝓁−1). We defer the proof to Section 3.

Proposition 3.  For each 𝜏 ∈ (0, 1) and any real-valued random variable 𝑊  with finite expectation, which is not almost surely constant, 
there exist real-valued random variables 𝑈 and 𝑉  with different expectations, such that 

P(𝑊 ∈ 𝐶) = (1 − 𝜏)P(𝑈 ∈ 𝐶) + 𝜏P(𝑉 ∈ 𝐶) (2)

for all Borel sets 𝐶 ⊆ R. Moreover, if 𝑊  has finite variance, 𝑈 and 𝑉  can be chosen to have finite variances, too.
Based on the argument given by Avanzi et al. (2021) and Boglioni Beaulieu et al. (2021) extended by Proposition  3, we are able 

to complete the family of counterexamples to the central limit theorem for triplewise independent summands, as specified in the 
following result:

Theorem 4.  For any random variable 𝑊  on the real line with finite variance, which is not almost surely constant, there exists a sequence 
𝑋1, 𝑋2,… of triplewise independent random variables, which follow the same distribution as 𝑊 , such that the standardized partial sums 𝑆𝑛
defined as in (1) converge in law to a probability distribution which is not normal.

We defer the proof to the end of Section 2, where we give an outline of the arguments given by Avanzi et al. (2021) 
and Boglioni Beaulieu et al. (2021), exposing the point where Proposition  3 is applied. Notice that the latter is not related to the 
dependence structure of the summands, which depends on a sequence of graphs. So far, sequences leading to counterexamples for 
pair- and triplewise independence have been constructed. In future, it may turn out that higher degree of tuplewise independence can 
also be covered: see the discussion in Chapter 5 of Boglioni Beaulieu et al. (2021). As stated in Corollary  9, this would automatically 
extend Theorem  4, preserving the generality of the distribution of the summands.

2. Adaptation of construction

As mentioned in the Introduction, the construction provided by Boglioni Beaulieu et al. (2021) starts with a sequence of 
undirected graphs 𝐺1, 𝐺2,… In order to provide 𝐾-tuplewise independence, all these graphs must be of girth at least 𝐾 + 1, that is, 
there must be no cycles of length 𝐾 or less.

For a graph 𝐺, denote as usual by 𝑉 (𝐺) its vertex set and by 𝐸(𝐺) its edge set. We work with abstract edges, assuming that each 
edge is assigned its two endpoints. In the sequence 𝐺1, 𝐺2,…, we assume that this assignment is consistent for all graphs in it, that 
is, any edge 𝑘 ∈ 𝐸(𝐺𝑚) ∩ 𝐸(𝐺𝑛) has the same endpoints in both 𝐺𝑚 and 𝐺𝑛.

Following Boglioni Beaulieu et al. (2021) (altering the notation to some extent), choose 𝓁 ∈ {2, 3, 4,…}. Define  ∶=
⋃∞

𝑚=1 𝑉 (𝐺𝑚)
and  ∶=

⋃∞ 𝐸(𝐺 ). For each vertex 𝑖 ∈  , consider a random variable 𝑀  distributed uniformly over {1, 2,… ,𝓁}, letting all 
𝑚=1 𝑚 𝑖
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random variables 𝑀𝑖, 𝑖 ∈  , be mutually independent. For each edge 𝑘 ∈  with endpoints 𝑖 and 𝑗, define 𝐷𝑘 ∶= 1 if 𝑀𝑖 = 𝑀𝑗 and 
𝐷𝑘 ∶= 0 otherwise. Since each graph 𝐺𝑚 has girth at least 𝐾 + 1, the family 𝐷𝑘, 𝑘 ∈ 𝐸(𝐺𝑚), is 𝐾-tuplewise independent. Denoting 
by 𝑛𝑚 the number of edges of 𝐺𝑚, let

𝛯∗
𝑚 ∶=

∑

𝑘∈𝐸(𝐺𝑚)
𝐷𝑘 , 𝜉∗𝑚 ∶=

𝛯∗
𝑚 − 𝑛𝑚𝓁−1

√

𝑛𝑚𝓁−1(1 − 𝓁−1)
.

Now choose two generic real-valued random variables 𝑈 and 𝑉  with finite variances. Let 𝑊  be a random variable with distribution 
being a mixture of the distributions of 𝑈 and 𝑉 : more precisely, 

P(𝑊 ∈ 𝐶) = (1 − 𝓁−1)P(𝑈 ∈ 𝐶) + 𝓁−1P(𝑉 ∈ 𝐶) (3)

for all Borel sets 𝐶 ⊆ R. Next, for each edge 𝑘 ∈  , consider random variables 𝑈𝑘 and 𝑉𝑘 following the same distribution as 𝑈
and 𝑉 , respectively. Choose the random variables 𝑈𝑘 and 𝑉𝑘, 𝑘 ∈  , to be all mutually independent as well as independent of the 
random variables 𝑀𝑖, 𝑖 ∈  . Letting 

𝑋𝑘 ∶=
{

𝑈𝑘 ; 𝐷𝑘 = 0
𝑉𝑘 ; 𝐷𝑘 = 1

(4)

and fixing 𝑚, observe that the random variables 𝑋𝑘, 𝑘 ∈ 𝐸(𝐺𝑚), are 𝐾-tuplewise independent and follow the same distribution as 
𝑊 .

The constructions in the papers by Avanzi et al. (2021) and Boglioni Beaulieu et al. (2021) start with 𝑊  and a Borel set 𝐴 ⊆ R, 
letting 𝑈 and 𝑉  follow the conditional distributions of 𝑊  given 𝐴 and 𝐴𝑐 , respectively. This gives rise to Condition  2. However, there 
is no need to choose 𝑈 and 𝑉  this way: all that suffices for the continuation and desired properties of the construction, in particular 
Theorem 1 in Avanzi et al. (2021) and Theorem 3.1 in Boglioni Beaulieu et al. (2021), is the relationship (3): the latter (along with 
the observation that 𝑋𝑘 follow the same distribution as 𝑊 ) corresponds to Formula (2.9) in Avanzi et al. (2021) and Formula (2.10)
in Boglioni Beaulieu et al. (2021). Along with Formula (2.8) in Avanzi et al. (2021) and Formula (2.9) in Boglioni Beaulieu et al. 
(2021) (which both correspond to (4)) and the independence properties of the random variables 𝑈𝑘 and 𝑉𝑘, 𝑘 ∈ 𝐸(𝐺𝑚), this is all 
that is used in the proofs of Theorem 1 in Avanzi et al. (2021) and Theorem 3.1 in Boglioni Beaulieu et al. (2021). This proves the 
following modification of Theorem 3.1 in Boglioni Beaulieu et al. (2021):

Theorem 5.  With 𝑈 , 𝑉 , 𝑊 , 𝐺𝑚, 𝑋𝑘 and 𝜉∗𝑚 as above, let 𝜇 = E𝑊  and 𝜎2 = Var(𝑊 ); assume that 0 < 𝜎 < ∞. Provided that there exists 
a random variable 𝑌 , such that

𝜉∗𝑚
law

←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

𝑌 ,

the standardized sums

𝑆∗
𝑚 ∶=

∑

𝑘∈𝐸(𝐺𝑚) 𝑋𝑘 − 𝑛𝑚𝜇

𝜎
√

𝑛𝑚

converge in law to the random variable

𝑆(𝓁) ∶=
√

1 − 𝑟2 𝑍 + 𝑟 𝑌 ,

where 𝑍 is a standard normal random variable, independent of 𝑌 , and where 𝑟 ∶=
√

𝓁−1(1 − 𝓁−1) (E𝑉 − E𝑈 )∕𝜎. □

Remark 6.  If 𝑟 > 0, then 𝑆(𝓁) is normal if and only if 𝑌  is normal.

However, by Proposition  3, each real-valued random variable 𝑊  with finite variance, which is not almost surely constant, admits 
random variables 𝑈 and 𝑉  with finite variances and different expectations, such that (3) is satisfied for all Borel sets 𝐶 ⊆ R. Recalling 
Remark  6, we have now proved the following assertion.

Corollary 7.  Let 𝑊  be a real-valued random variable with expectation 𝜇 and variance 𝜎2; assume that 0 < 𝜎 < ∞. Let 𝐺𝑚, 𝑛𝑚 and 𝜉∗𝑚, 
𝑚 = 1, 2, 3,…, be as above. Suppose that all graphs 𝐺𝑚 have girth at least 𝐾 + 1 and that the random variables 𝜉∗𝑚 converge in law to a 
probability distribution which is not normal. Then there exist random variables 𝑋𝑘, 𝑘 ∈  , with the following properties:

• For each 𝑘 ∈  , 𝑋𝑘 has the same distribution as 𝑊 .
• For each 𝑚 = 1, 2, 3,…, the family 𝑋𝑘, 𝑘 ∈ 𝐸(𝐺𝑚), is 𝐾-tuplewise independent.
• The standardized sums 𝑆∗

𝑚 =
∑

𝑘∈𝐸(𝐺𝑚 ) 𝑋𝑘−𝑛𝑚𝜇
𝜎
√

𝑛𝑚
 converge in law to a probability distribution which is not normal. □

The preceding assertion allows us to construct counterexamples to the central limit theorem in terms of arrays of random 
variables, each graph giving one row. On the other hand, the central limit theorem is originally formulated in terms of sequences. The 
latter can also be constructed if the graphs 𝐺𝑚 form an increasing sequence in the sense that 𝑉 (𝐺1) ⊆ 𝑉 (𝐺2) ⊆ ⋯, 𝐸(𝐺1) ⊆ 𝐸(𝐺2) ⊆ ⋯
and for each 𝑚, 𝐸(𝐺𝑚) is exactly the set of all edges in 𝐸(𝐺𝑚+1) with both endpoints in 𝑉 (𝐺𝑚). Notice that this allows us to define 
the endpoints of each edge 𝑘 ∈  consistently. All examples given by Boglioni Beaulieu et al. (2021) are of this kind.
3 
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Following Boglioni Beaulieu et al. (2021), arrange the edge set  into a sequence, so that the elements of 𝐸(𝐺1) come first, 
followed by the elements of 𝐸(𝐺2)⧵𝐸(𝐺1), then by 𝐸(𝐺3)

\ (

𝐸(𝐺1)∪𝐸(𝐺2)
) and so on; otherwise, the order does not matter. Without 

loss of generality, we can just assume that 𝐸(𝐺1) = {1, 2,… , 𝑛1} and 𝐸(𝐺𝑚)
\ (

𝐸(𝐺1) ∪⋯∪𝐸(𝐺𝑚−1)
)

= {𝑛𝑚−1 +1, 𝑛𝑚−1 +2,… , 𝑛𝑚} for 
𝑚 = 2, 3, 4,… Thus, we have obtained a sequence of random variables 𝑋1, 𝑋2, 𝑋3,…, which are 𝐾-tuplewise independent provided 
that each graph 𝐺𝑚 has girth at least 𝐾+1. Letting 𝑆𝑛 be as in (1), notice that 𝑆∗

𝑚 = 𝑆𝑛𝑚 . Therefore, under the conditions of Corollary 
7, the sequence 𝑆1, 𝑆2,… has a subsequence which converges in law to a non-normal distribution. Hence the sequence 𝑆1, 𝑆2,…
does not converge to a normal distribution. This is what is proved by Boglioni Beaulieu et al. (2021) (under Condition  2).

However, under some additional conditions, one can do a bit more, showing that the whole sequence of standardized partial 
sums actually converges in law.

Lemma 8.  Let 𝑉1, 𝑉2,… be uncorrelated zero-mean random variables with the same variance 𝜎2, where 0 < 𝜎 < ∞. Let

𝑇𝑛 ∶=
1

𝜎
√

𝑛

𝑛
∑

𝑘=1
𝑉𝑘

be their standardized partial sums. Take a sequence 𝑛1 < 𝑛2 < ⋯ of natural numbers with lim𝑚→∞ 𝑛𝑚+1∕𝑛𝑚 = 1. If the subsequence 
𝑇𝑛1 , 𝑇𝑛2 ,… converges in law to a random variable 𝑇 , then the same is true for the whole sequence 𝑇1, 𝑇2,…

Proof.  Letting 𝑁𝑛 ∶= 𝑛𝑚 for 𝑛𝑚 ≤ 𝑛 < 𝑛𝑚+1, we find that the sequence

1
𝜎
√

𝑁𝑛

𝑁𝑛
∑

𝑘=1
𝑉𝑘 ; 𝑛 = 1, 2, 3,…

converges in law to 𝑇 . Notice that the assumed condition implies that lim𝑛→∞ 𝑛∕𝑁𝑛 = 1. Now consider the sequence
1

𝜎
√

𝑁𝑛

𝑛
∑

𝑘=𝑁𝑛+1
𝑉𝑘 ; 𝑛 = 1, 2, 3,…

and observe that Var( 1
𝜎
√

𝑁𝑛

∑𝑛
𝑘=𝑁𝑛+1

𝑉𝑘
)

= 𝑛−𝑁𝑛
𝑁𝑛

 tends to zero as 𝑛 → ∞. By Chebyshev’s inequality, the random variables 
1

𝜎
√

𝑁𝑛

∑𝑛
𝑘=𝑁𝑛+1

𝑉𝑘 then converge in law to zero as 𝑛 → ∞. By Slutsky’s theorem, the sequence 1
𝜎
√

𝑁𝑛

∑𝑛
𝑘=1 𝑉𝑘 then converges in 

law to 𝑇 . The rest is completed by another part of Slutsky’s theorem, recalling that lim𝑛→∞ 𝑛∕𝑁𝑛 = 1. □

We can now summarize our observations into the following assertion:

Corollary 9.  Let 𝑊  be a real-valued random variable with expectation 𝜇 and variance 𝜎2; assume that 0 < 𝜎 < ∞. Let 𝐺𝑚, 𝑛𝑚 and 
𝜉∗𝑚, 𝑚 = 1, 2, 3,…, be as above. Suppose that all graphs 𝐺𝑚 have girth at least 𝐾 + 1 and that the random variables 𝜉∗𝑚 converge in law 
to a probability distribution which is not normal. Then there exist 𝐾-tuplewise independent random variables 𝑋1, 𝑋2, 𝑋3,…, each of them 
following the same distribution as 𝑊 , such that their standardized partial sums 𝑆𝑛 defined as in (1) do not converge to a normal distribution. 
If, in addition, 𝑛1 < 𝑛2 < ⋯ and lim𝑚→∞ 𝑛𝑚+1∕𝑛𝑚 = 1, then the random variables 𝑆𝑛 converge in law to a probability distribution which is 
not normal. □

With the preceding assertion, we are in a position to prove Theorem  4.

Proof of Theorem  4.  Following Boglioni Beaulieu et al. (2021), choose 𝐺𝑚 ∶= 𝐾𝑚,𝑚; as usual, 𝐾𝑚,𝑚 denotes the bipartite graph 
with vertices divided into two groups of 𝑚 vertices, where two vertices are adjacent if and only if they belong to different groups. 
Notice that 𝐾𝑚,𝑚 has 𝑚2 edges and girth 4 for 𝑚 ≥ 2. Choosing any 𝓁 ∈ {2, 3, 4,…}, Theorem 4.1 in Boglioni Beaulieu et al. (2021) 
shows that the underlying random variables 𝜉∗𝑚 defined as above converge in law to a variance gamma distribution, which is not 
normal. Thus, the conditions of Corollary  9 are fulfilled, proving the result. □

3. Construction of mixture

It remains to prove Proposition  3, which claims that any suitable probability distribution on the real line can be represented as 
a suitable mixture of two distributions.

Proof of Proposition  3.  Let 𝑎 ∶= sup{𝑤 ∈ R ; P(𝑊 < 𝑤) < 1 − 𝜏} and 𝑏 ∶= inf{𝑤 ∈ R ; P(𝑊 > 𝑤) < 𝜏} be the lower and upper 
(1 − 𝜏)-quantile of the random variable 𝑊 . Clearly, 𝑎 ≤ 𝑏, P(𝑊 < 𝑎) ≤ 1 − 𝜏 ≤ P(𝑊 ≤ 𝑎) and P(𝑊 > 𝑏) ≤ 𝜏 ≤ P(𝑊 ≥ 𝑏). We now 
distinguish two cases.

First, if 𝑎 < 𝑏 or P(𝑎 ≤ 𝑊 ≤ 𝑏) = 0, then P(𝑊 ≤ 𝑎) = 1 − 𝜏 and P(𝑊 ≥ 𝑏) = 𝜏. In this case, the construction is exactly the same 
as in Avanzi et al. (2021) and Boglioni Beaulieu et al. (2021): choosing 𝑈 and 𝑉  to follow the conditional distributions of 𝑊  given 
𝑊 ≤ 𝑎 and 𝑊 ≥ 𝑏, respectively, (2) is immediate. Moreover, E𝑈 = E(𝑊 ∣ 𝑊 ≤ 𝑎) ≤ 𝑎 < 𝑏 = E(𝑊 ∣ 𝑊 ≥ 𝑏) = E𝑉 . Finally, if 𝑊  has 
finite variance, that is, if E(𝑊 2) < ∞, then E(𝑈2) = E(𝑊 2 ∣ 𝑊 ≤ 𝑎) and E(𝑉 2) = E(𝑊 2 ∣ 𝑊 ≥ 𝑏) are finite, too.

It remains to consider the case where 𝑎 = 𝑏 and P(𝑊 = 𝑎) > 0. Then define the distributions of 𝑈 and 𝑉  by

P(𝑈 ∈ 𝐶) = 1
(

P(𝑊 ∈ 𝐶,𝑊 < 𝑎) +
1 − 𝜏 − P(𝑊 < 𝑎) P(𝑊 ∈ 𝐶,𝑊 = 𝑎)

)

1 − 𝜏 P(𝑊 = 𝑎)

4 
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and

P(𝑉 ∈ 𝐶) = 1
𝜏

(

P(𝑊 ∈ 𝐶,𝑊 > 𝑎) +
𝜏 − P(𝑊 > 𝑎)
P(𝑊 = 𝑎)

P(𝑊 ∈ 𝐶,𝑊 = 𝑎)
)

.

A brief calculation shows that the latter two formulas indeed define probability distributions and that (2) is fulfilled. Next, we show 
that we again have E𝑈 < E𝑉 . First, observe that both expectations exist with

E𝑈 =
E
[

𝑊 1(𝑊 < 𝑎)
]

+ 𝑎
(

1 − 𝜏 − P(𝑊 < 𝑎)
)

1 − 𝜏
and

E𝑉 =
E
[

𝑊 1(𝑊 > 𝑎)
]

+ 𝑎
(

𝜏 − P(𝑊 > 𝑎)
)

𝜏
.

Now if P(𝑊 < 𝑎) > 0, then E(𝑊 ∣ 𝑊 < 𝑎) < 𝑎. A brief calculation shows that E𝑈 < 𝑎 in this case. Similarly, if P(𝑊 > 𝑎) > 0, then 
E𝑉 > 𝑎. Since 𝑊  is not almost surely constant, at least one of these two cases occurs. Noting that E𝑈 ≤ 𝑎 ≤ E𝑉 , we conclude that 
E𝑈 < E𝑉 .

Finally, observe that if 𝑊  has finite variance, that is, if E(𝑊 2) < ∞, we also have

E(𝑈2) =
E
[

𝑊 21(𝑊 < 𝑎)
]

+ 𝑎2
(

1 − 𝜏 − P(𝑊 < 𝑎)
)

1 − 𝜏
< ∞

and

E(𝑉 2) =
E
[

𝑊 21(𝑊 > 𝑎)
]

+ 𝑎2
(

𝜏 − P(𝑊 > 𝑎)
)

𝜏
< ∞

and the proof is complete. □
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