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STATEMENT

@ Xi,Xo,...,X, ... independent R%-valued random vectors
with sum W

(*] EX,' =0, Var(W) = Id
@ %4 ... the family of all measurable convex subsets of R?
@ ||| ... Euclidean norm
n
° f3:=) E|Xi
i=1
Theorem (Goétze, 1991)
For each d, there exists Ky, such that

[P(W € C) = N(0,19){C}| < Kuf3

for all W and all C € 64.
Ford > 6, we have Ky < 157.85d + 10.




DOUBT

Theorem (Goétze, 1991)
For each d, there exists Ky, such that

[P(W € C) = N(0,10){C}| < Kuf3

for all W and all C € 6.
Ford > 6, we have Ky < 157.85d + 10.

Theorem (Bhattacharya and Holmes, 2010)
IP(W € C) —N(0,14){C}| < Kd*/?p5




STEIN’'S METHOD FOR THE MULTIVARIATE
NORMAL DISTRIBUTION
We have

E[f(W)] —=N(0,1g){f} =E[7g(W)] ,
where
ZgW) = Ag(w) — (Vg(w), w)
and where g solves .7 g(w) = f(w) — N(0, I4){f}.
g(w) Z/OOO/Rd(N(OJd){f} — f(e_’W+zm))¢d(z) dz dt

- /OTF/Z/Rd <N(0, lo){f} — f(wcos a+zsin a))qﬁd(z) dztan o da

where ¢4(z) = (27)"9/2e-12I*/2 is the standard normal density.



SOME DIFFERENTIAL CALCULUS

Let w,xq,...,x in RY with w; = (wy,..., wy) and

Xi = (X,‘1 yeun ,X,'d). Define
d
(Vig(w), X;@X2®- - -@X;) := Z Djijpji 9(W) X1, Xa)y -+~ Xgly -
Jtyeefr=1

V'g(w) can be regarded as a symmetric r-fold tensor.



EXPANSION OF STEIN'S OPERATOR

w/2
E[f(W)] — N(0,1){f} = —/ E[7%f(W)] tan a do,
0
where
U f(W) ::/ f(wcosa + zsina) ¢4(z) dz.
Rd

Taylor’s expansion yields

E[7g(W)]
= S E[(RaW 0x) . X K72 — (1 - 0)x2Y]
i=1

where W, = W — X;, X; is an independent copy of X;, 6 is
uniformly distributed over [0, 1], and X; and # are independent
of each other and all other variates.



ESTIMATION OF THE DERIVATIVES (1)

Bhattacharya and Holmes estimate

d

(V3g(w), x@y®2)| < > |Di(w)|xllyllzl.
jk,I=1

U f(W) = /]Rd f(weosa + zsina) ¢q(2z) dz,

Djk/%af(W) = —cot’ /d f(WCOSOé + zsin a) Djkl¢d(z) az,
R
d

(Puf(w), x2y@2)| < allfle Y byllvillz]cof a
j k=1

where

c3max/ ‘Djk/¢d |dZ/ |D11194(2 ]dz—/|¢’” )| dz



ESTIMATION OF THE DERIVATIVES (2)

d
(V2tw), x2y@2)| < aallfllee > 1]yl |21 0f @
Jk,I=1

< callfllo - d¥2|x|| Iyl 1|2] cot®

Can we do better?
Yes, thanks to the fact that V3g(w) is a symmetric 3-tensor.

Theorem (Banach, 1938)

If T is a symmetric r-tensor, then

IThv=sup [T,xi® - @x)| = sup|[(T,x*).
(¢ (], [ xr | <1 [Ix]I<1
Therefore,
)(V%Z/ f(w), xey o z)| < ||V32f(w)], Xyl 1z

3
< G| fllooIX1[ Iyl fI2]] cot”



SMOOTHING (1)

For f = f% := fc — }, where fo(w) = 1(w € C), we obtain
‘E[&ﬂ%afc(wﬂ ‘ tana = ‘E[y%afé(wﬂ ) tana < 3c3B3 cot? e,

but this is not integrable with respect to a.
However,

U-fc(w) —N(0, la){fc}
_ /W/Z (N0, 1) {f} — Zafo(w)) tan a da,

w/2
B[%6(W)] - NO.lo){fo}| < Josfs [ cofada

< 3cyB3 cote.



SMOOTHING (2)

[E[#fo(w)] = N(O,la){fc}| < s cote

Smoothing cost:

sup [E[fo(W)] — N(0,19){fc}|
Ceby
< %gu(g E[%fc(W)] — N(Ovld){fC}‘ + 3X7/8,0 Vo tane,
€6y

where x,.q is the p-th quantile of the x(d)-distribution and
where vq := SUPcey, [5c Pd d Volg_1.
Optimization in ¢ gives

sup |P(W € C) — N(0,15){C}| < /10 x7/8,0 a3 -
Cety

For d > 6, X7/8:d <1.27 \/8
In 1991, it was only known that v4 < 2V/d.
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INDUCTION (1)

In order to improve the rate of convergence, we can condition
the expression

E[7g(W)]
= EnZEKvag(vmex,-), X X2 - (1-0)X2)],
i=1

on X;, X;, apply independence and use the approximate
normality of W; as an induction hypothesis. Approximate
normality helps because

cos® o
o3

IN(u, 2V %t} |, < csllflloo

)

where o2 is the smallest eigenvalue of X.
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INDUCTION (2)

Suppose that we have proved

sup [P(W € C) — N(0,14){C}| < Kyf33
Ce%y

for all suitable sums W of n — 1 random vectors. If W is a
suitable sum of n random vectors, then

3caBscos? asina + Sc382 cot? a

o3

Y

‘E[y%afC(W)] ’ tan o <

where o2 is the smallest one of all eigenvalues of Var(W;).
Therefore,

sup |P(W € C) — N(0,14){C}|
Ceby
_ 20333 + 203Ky 32 cote

e + 3Xx7/8,dVdtane.
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INDUCTION (3)

sup [P(W € C) — N(0,15){C}|

Ceby

1 2

=C33 + 2c3K485 cote

< 3 -3 8 + gX7/8;d Ygtane.
. 4 . .
Choosing tane = 033’)33, the right hand side reduces to
o

|

=C3+ 10c . K,

303 3 X7/8;d Vd ] By

o3 2
2/3

Using o® <1 — B3~ and assuming w.l.0.g. that 33 is sufficiently
small, we can complete the induction.

For d > 6, we have x7/g,q7a < 2.54d.
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GAUSSIAN PERIMETERS OF CONVEX SETS

@ In 1991, it was known that 74 < 2V/d.
@ Ball (1994): 4 < 4d'/4

© Nazarov (2003): 0.28 < liminf dZ‘/’4 < limsup % <0.76

@ R.(2018): 74 < 0.59 d1/4 +0.21
This reduces Ky = O(d) to Ky = O(d®/4).
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MORE EFFICIENT SMOOTHING (1)

Senatov (1980), Bentkus (1986, 2003):
@ C° ={x;dist(x,C) <e}; C°={x,;dist(x,C°) > ¢};
@ fo= < fp® < fo < fg <fc-;

4
This allows us to bound || V3%, f||, < %Ota

and we already know that || V3%, f||, < 3Ca cot® av.
Combining both estimates, the induction step changes to

sup |P(W € C) — N(0,145){C}|

Ceby
/2 12 2K,
Sﬁs/ min{ C1 COS v (W+ dB3>7
0

€ o eo3

cos? asin K, 35 cot?
+303( asina , Kafs a)}da—i—’yds.

403 203
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MORE EFFICIENT SMOOTHING (2)

sup [P(W € C) — N(0,14){C}|

Cety
/2 12 2K,
Sﬁs/ min{C1 cosa <w+ d353>’
0 (3 g EO
2 i 2
cosasina KB cott o
+ 3¢3 < 453 + 5,3 da + vqe .

The last term no longer contains a factor like x7/g q-
Important:

/2
/ min{A, Bcot? o} da < 2V AB.
0

This allows us to derive

sup [P(W € C) — N(0,14){C}| < (7174 + 1)53
Ce%y

< (42d"V* +16)p;.
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EXTENSION TO DEPENDENCE?

@ For dependent random vectors, we would need induction
over conditional distributions.

@ Conditional 85 can be larger than unconditional.

@ ltis challenging to bound the error in terms of third
moments.
In particular, if (X;);c.» fit a dependence graph with
maximum degree of D, is it true that

sup |P(W € C) — N(0,14){C}| < Kd"/*D?4
Ce%y

for some universal constant K?
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POSSIBLE STRUCTURE OF RANDOM VECTORS

e W)\, )\ € A, defined on possibly different probability spaces;
o E W)\ =0, Var( W)\) = Id;
@ V) satisfying

E[f(Wy) W] :/: E[f(Vae)] pa(dé);

similar to the Stein coupling
E[f(Wh)Wy] = E[GA(f(W}) — f(Wy))]
(1 are vector-valued measures);

E[f(W3)] — E[f(Vae)] /<E [VH(Vag)] , vac(dn))

(the total variation of the vector valued measure vy¢
measures the proximity of V)¢ to W));

° VAg QW g + Vae-
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THANK YOU FOR YOUR ATTENTION!
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