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1. (20) There are 4 aces, 4 kings and 4 queens in a deck of 52 cards. The deck is
shuffled well and cards are dealt from the top of the deck one card at a time until the
first ace is dealt. Let X be the number of kings and Y the number of queens dealt
before the first ace.

a. (10) Determine the distribution of the random vector (X, Y ).

Hint: do you have to look at all 52 cards?

Solution: The random vector (X, Y ) takes values (k, l) where 0 ≤ k, l ≤ 4. We
are interested in the relative position of aces, kings and queens. If all other cards
are excluded from the deck, we are left with a random permutation of 12 cards. To
compute the probabilities P (X = k, Y = l), we have to count all permutations,
where k kings and l queens are dealt before the first ace. This happens if we
select k kings in

(
4
k

)
ways and l queens in

(
4
l

)
ways. These k+ l can be randomly

permuted, after which one of four aces is selected. The remaining 12− (k+ l+1)
are randomly permuted. It follows

P (X = k, Y = l) =
4
(

4
k

)(
4
l

)
(k + l)! (11− k − l)!

12!

=
4 · (4!)2 (k + l)! (11− k − l)!

12! k! l! (4− k)! (4− l)!
.

b. (5) Are X and Y independent?

Solution: for independence for all pairs k, l ∈ {0, 1, 2, 3, 4} (X, Y ) we need to
have

P (X = k, Y = l) = f(k) g(l)

for some functions f, g : {0, 1, 2, 3, 4} → R. This implies for all pairs k, l ∈
{0, 1, 2, 3, 4} the equality

H(k, l) := (k + l)! (11− k − l)! = f̃(k) g̃(l) ,

which for example means that the matrix[
H(0, 0) H(0, 1)
H(1, 0) H(1, 1)

]
=

[
11! 10!
10! 2 · 9!

]
= 9!

[
110 10
10 2

]
should be degenerate but this is not true. It follows that X and Y are dependent.

c. (5) Determine the distribution of X + Y .
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Solution: we use the same procedure as in a. We merge kings and queens. There
are again 12! permutation of 12 cards, and for X + Y = n to happen there are(

8

n

)
· n! · 4 · (12− n− 1)!

possibilities. For n = 0, 1, . . . , 8 we have

P (X + Y = n) =
4
(

8
n

)
n! (11− n)!

12!
=

(11− n)(10− n)(9− n)

2970
.
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2. (20) In the Poker test used for testing random number generators, the follow-
ing problem appears: we have independent, equally distributed random variables
ξ1, ξ2, ξ3, ξ4, ξ5 uniformly distributed on the set {0, 1, . . . ,m − 1} for a given m > 0.
Let X be the number of distinct numbers in the set {ξ1, ξ2, ξ3, ξ4, ξ5}. Example: for
the set {1, 2, 5, 2, 5} we have X = 3.

a. (10) Compute E(X).

Hint: express X with the indicators

Ik =

{
1 if the number k appears in the set {ξ1, ξ2, ξ3, ξ4, ξ5}
0 otherwise.

Solution: for k = 0, 1, . . . ,m− 1 we define indicators

Ik =

{
1 if the number k appears in the set {ξ1, ξ2, ξ3, ξ4, ξ5}
0 otherwise.

We can write X = I0 + · · ·+ Im−1. All indicators have the same distribution so
we can compute

P (Ik = 0) =

(
m− 1

m

)5

, P (Ik = 1) = 1−
(
m− 1

m

)5

.

It follows

E(X) = m

[
1−

(
m− 1

m

)5
]
.

b. (10) Compute var(X).

Hint: use P (Ik = 1, Il = 1) = 1− P
(
{Ik = 0} ∪ {Il = 0}

)
.

Solution: First approach: we use var(X) = E(X2)−
(
E(X)

)2
and we compute

E(X2) =
m−1∑
k=0

E(I2
k) +

∑
0≤k,l<m

k 6=l

E(IkIl)

=
m−1∑
k=0

P (Ik = 1) +
∑

0≤k,l<m
k 6=l

P (Ik = 1, Il = 1) .
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We use the hint in the second term:

P (Ik = 1, Il = 1) = 1− P
(
{Ik = 0} ∪ {Il = 0}

)
= 1− P (Ik = 0)− P (Il = 0) + P (Ik = 0, Il = 0) .

Similarly as in a. for k 6= l we can compute

P (Ik = 0, Il = 0) =

(
m− 2

m

)5

.

It follows

P (Ik = 1, Il = 1) = 1− 2

(
m− 1

m

)5

+

(
m− 2

m

)5

.

We combine the results and we get

var(X) = m

[
1−

(
m− 1

m

)5
]

+m(m− 1)

[
1− 2

(
m− 1

m

)5

+

(
m− 2

m

)5
]

−m2

[
1− 2

(
m− 1

m

)5

+

(
m− 1

m

)10
]

= m

(
m− 1

m

)5

+m(m− 1)

(
m− 2

m

)5

−m2

(
m− 1

m

)10

.

Second approach: we can write the variance as a sum of variances and covari-
ances:

var(X) =
m−1∑
k=0

var(Ik) +
∑

0≤k,l<m
k 6=l

cov(Ik, Il) .

By symmetry, all variances are the same and also all covariances are the same.
We have

var(Ik) = P (Ik = 0)P (Ik = 1) =

(
m− 1

m

)5
[

1−
(
m− 1

m

)5
]

and
cov(Ik, Il) = P (Ik = 1, Il = 1)− P (Ik = 1)P (Il = 1) .

We compute for k 6= l

P (Ik = 1, Il = 1) = 1− 2

(
m− 1

m

)5

+

(
m− 2

m

)5

,
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and hence

cov(Ik, Il) = P (Ik = 1, Il = 1)− P (Ik = 1)P (Il = 1)

=

(
m− 2

m

)5

−
(
m− 1

m

)10

.

We combine the results to get

var(X) = m

(
m− 1

m

)5
[

1−
(
m− 1

m

)5
]

+m(m− 1)

[(
m− 2

m

)5

−
(
m− 1

m

)10
]

= m

(
m− 1

m

)5

+m(m− 1)

(
m− 2

m

)5

−m2

(
m− 1

m

)10

.
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3. (20) Let U and V be independent and U, V ∼ exp(1).

a. (10) Let X = U − V . Compute the density of X.

Solution: let
Φ(u, v) = (u− v, v) .

From
Φ−1(x, v) = (x+ v, v)

follows that
JΦ−1(u, x) = 1 .

Therefore
fX,V (x, v) = fU(x+ v)fV (v) .

By symmetry, fX(x) is an even function. We can assume x ≥ 0 and compute

fX(x) =

∫ ∞
0

e−x−ve−vdv

= e−x
∫ ∞

0

e−2vdv

=
1

2
e−x .

It follows

fX(x) =
1

2
e−|x|

for x ∈ R.

b. (10) Let X and Y be independent and let both have the same distribution as
U − V . Compute the density of Z = X − Y .

Solution: Let U, V, Ũ , Ṽ ∼ exp(1) be equally distributed and independent. Let
X = U − V in Y = Ũ − Ṽ . We can write

X − Y =
(
U + Ṽ

)
−
(
V + Ũ

)
.

We know that U + Ṽ ∼ Γ(2, 1) and the same holds for the sum in the sec-
ond parenthesis. By symmetry, the density fZ(z) will be an even function. We
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compute for z ≥ 0

fZ(z) =

∫ ∞
0

(z + x)e−z−xxe−xdx

= ze−z
∫ ∞

0

xe−2xdx+ e−z
∫ ∞

0

x2e−2xdx

=
1

4
ze−z +

1

4
e−z

=
1

4
(z + 1)e−z .

Finally, it follows

fZ(z) =
1

4
(|z|+ 1)e−|z|

for z ∈ R.
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4. (20) Assume that subsequent coin tosses are independent and that the probability
of heads is equal to p. Let q := 1− p. Let Wn be the number of tosses it takes to get
n consecutive heads including the last n tosses.

a. (10) Justify that
P (Wn = k + 1|Wn−1 = k) = p

and for l > k + 1

P (Wn = l|Wn−1 = k) = qP (Wn = l − k − 1) .

Solution: if on the k-th toss we get n − 1 consecutive heads for the first time,
two things can happen: we get heads on the next toss and therefore Wn = k + 1;
or we get tails on the next toss and the “waiting” for n consecutive heads starts
all over. The above equations capture this in mathematical notation.

b. (10) Show that
E (Wn|Wn−1 = k) = k + 1 + qE(Wn)

and compute E(Wn).

Solution: from the conditional probabilities we get

E (Wn|Wn−1 = k) = p(k + 1) +
∞∑

l=k+1+n

qlP (Wn = l − k − 1)

= p(k + 1) + q
∞∑

m=n

(m+ k + 1)P (Wn = m)

= p(k + 1) + q(k + 1) + qE(Wn)

= k + 1 + qE(Wn) .

Multiply both sides of the equation by P (Wn−1 = k) and add up. It follows

E(Wn) =
∞∑

k=n−1

E(Wn|Wn−1 = k)P (Wn−1 = k)

=
∞∑

k=n−1

(k + 1 + qE(Wn))P (Wn−1 = k)

= E(Wn−1) + 1 + qE(Wn) .

Hence

E(Wn) =
1

p
+

1

p
E(Wn−1) .
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Since E(W1) = p−1 we have

E(Wn) =
n∑

k=1

1

pk
=

1

pn
1− pn

1− p
.
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5. (20) In a branching process, every individual has two descendants with probability
1/4, and no descendants with probability 3/4.

a. (5) Prove that this process dies out with probability 1.

Solution: the generating function of the number of descendants is equal to G(s) =
3
4

+ 1
4
s2 and the equation G(s) = s has two solutions, s = 1 in s = 3. The value

1is the only fixed point of the function G in the interval [0, 1]. Therefore this is
the probability that the process dies out.

b. (5) Let Z1 be the number of descendants in the first generation. Let N be the
number of all individuals in the process and let H be the generating function of
N . For k ∈ {0, 2} express E(sN | Z1 = k) by s and H(s).

Solution: if Z1 = 0, we have N = 1, therefore E(sN | Z1 = 0) = s. Conditionally
on Z1 = 2, the random variable N has the same distribution as the number of
all individuals of two independent processes, that are distributed as N process,

increased by 1. Therefore E(sN | Z1 = 2) = s
(
H(s)

)2
.

c. (10) Compute the distribution of the number of all individuals in the given
process, i. e. for every n ≥ 1 compute P (N = n).

Hint: (1 + x)m =
∑∞

k=0

(
m
k

)
xk.

Solution: using the total expectation formula we get

H(s) = E(sN)

= P (Z1 = 0)E
(
sN | Z1 = 0

)
+ P (Z1 = 2)E

(
sN | Z1 = 2

)
=
s

4

[
3 +

(
H(s)

)2
]
.

We solve the equation for H(s) and get

H(s) =
2

s

(
1±

√
1− 3

4
s2
)
,

which is generating function only in the case when we take negative square root.
Therefore

H(s) = 2
∞∑
k=1

(−1)k−1

(
1/2

k

)
3k

4k
s2k−1 .

The random variable N takes values n = 2k − 1 and it follows:

P (N = n) = 2(−1)k−1

(
1/2

k

)
3k

4k
= −2

3k

4k

(
−1

2

)
k

k!
=

3k

4k

(
1
2

)
k−1

k!
= 2

3k

4k

(n− 2)!!

(n+ 1)!!
,

where (x)r := x(x+ 1)(x+ 2) · · · (x+ r − 1) is the Pochhammer simbol.
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6. (20) There are B magical white and R magical red balls in an urn. We randomly
select n balls from the urn, where every selection is equally likely. As the balls are
magical, just after the selection and before we look at them the balls change their colour
to the other with probability 1/4 independently of one another and independently of
the selection procedure. Let M1 be the number of white balls selected initially and M2

the number of red balls selected initially. Let N1 be the number of white balls after
the balls change colour and N2 the number of red balls after the balls change colour.

a. (5) Compute E(N1|M1 = m1,M2 = m2).

Solution: white balls randomly change colour. If there are m1 white balls the
expected number of white balls after changing colour is 3m1/4. Out of m2 black
balls we can expect m2/4 white balls after they change their colour. It follows

E(N1|M1 = m1,M2 = m2) =
3m1

4
+
m2

4
.

b. (5) Compute E(N1N2|M1 = m1,M2 = m2).

Hint: what is cov(N1, N2|M1 = m1,M2 = m2).

Solution: since magic balls are changing colours independently od one another
and independently of the selection procedure, we have

cov(N1, N2|M1 = m1,M2 = m2)

= E(N1N2|M1 = m1,M2 = m2)

−E(N1|M1 = m1,M2 = m2)E(N2|M1 = m1,M2 = m2)

= 0 .

It follows

E(N1N2|M1 = m1,M2 = m2) =

(
3m1

4
+
m2

4

)(
m1

4
+

3m2

4

)
.

c. (10) Show that

cov(N1, N2) = −var(M1)

4
.
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Solution: we have M1 ∼ HiperGeom(n,B,N).

E(N1) =
∑
k,l

k+l=n

E(N1|M1 = m1,M2 = m2)P (M1 = m1,M2 = m2)

=
∑
k,l

k+l=n

(
3m1

4
+
m2

4

)
P (M1 = m1,M2 = m2)

=
3

4
E(M1) +

1

4
E(M2)

=
3nB

4N
+
nR

4N

=
n(3B +R)

4N

On the other hand, if we consider M1 +M2 = n, it holds

var(M1) = var(M2) and cov(M1,M2) = −var(M1) .

We compute

E(N1N2)

=
∑
k,l

k+l=n

E(N1N2|M1 = m1,M2 = m2)P (M1 = m1,M2 = m2)

=
∑
k,l

k+l=n

(
3m1

4
+
m2

4

)(
m1

4
+

3m2

4

)
P (M1 = m1,M2 = m2)

=
1

16
E
(
3M2

1 + 3M2
2 + 10M1M2

)
=

1

16

(
6var(M1) + 3E(M1)2 + 3E(M2)2 − 10var(M1) + 10E(M1)E(M2)

)
= −1

4
var(M1) +

3n2B2

16N2
+

3n2R2

16N2
+

10n2BR

16N2

= −1

4
var(M1) +

n2(3B +R)(B + 3R)

16N2

= −1

4
var(M1) + E(N1)E(N2) .

The equality follows.
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