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1. (20) We toss a coin until we get two heads in a row or two tails in a row. Denote
the number of necessary tosses, including the last one, by X. Assume the tosses are
independent and the probability of landing heads is p ∈ (0, 1). Assume as known that
for |x| < 1 we have

∞∑
k=1

kxk =
x

(1− x)2
.

a. (10) Compute P (X = n) for n = 2, 3, . . ..

Hint: do the computation for odd and even n separately.

Solution: let n = 2k first. The event {X = 2k} happens in two disjoint ways:
(i) the first toss is heads, the next (2k− 3) tosses are alternately tails and heads,
and then we get two heads in a row (ii) the first toss is tails, the next (2k − 3)
tosses are alternately heads and tails, and then we get two tails in a row. The
probability of the first way is pk−1qk−1p2, and the probability of the second is
pk−1qk−1q2. It follows that

P (X = 2k) = pk+1qk−1 + pk−1qk+1 .

If n = 2k + 1, for k ≥ 1 a similar argument gives

P (X = 2k + 1) = pk−1qkp2 + pkqk−1q2 = pkqk .

In a joint expression

P (X = n) = (pq)[n
2
− 1

2
](p2 + q2)

1
2

(1+(−1)n),

where [x] is the integer part of x.

b. (10) Compute E(X).

Solution: we compute by definition.

E(X) =

=
∞∑
n=2

nP (X = n) =

=
∞∑
k=1

(2k)P (X = 2k) +
∞∑
k=1

(2k + 1)P (X = 2k + 1) =

= 2
∞∑
k=1

k(p2 + q2)(pq)k−1 +
∞∑
k=1

(2k + 1)(pq)k =

= 2(p2 + q2)
1

(1− pq)2
+ 2

∞∑
k=1

k(pq)k +
∞∑
k=1

(pq)k =

= 2(p2 + q2)
1

(1− pq)2
+

2pq

(1− pq)2
+

pq

1− pq
=

=
2(p2 + 2pq + q2)− pq − p2q2

(1− pq)2
=

=
2− pq − p2q2

(1− pq)2
=

1− pq + (1− p2q2)

(1− pq)2
=

=
2 + pq

1− pq
.
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2. (20) Consider an urn initially containing a white and b black balls. Assume that
n = a + b is even, and denote m = n/2. We randomly draw pairs of balls from the
urn uniformly without replacement, until we draw all the pairs. Thus, the balls have
been arranged into pairs with all n!/(m! · 2m) possible arrangements having the same
probability. Denote by X the number of pairs with both balls white and by Y the
number of pairs with both balls black.

a. (10) Compute E(X).

Solution:

First method: define

Ik :=

{
1 both balls in the k-th pair drawn are white;
0 otherwise.

We have X =
∑m

k=1 Ik and consequently E(X) =
∑m

k=1E(Ik). Next, by symme-
try, the k-th pair drawn is selected uniformly at random out of all possible pairs
of balls. Therefore,

E(Ik) = P (Ik = 1) =
a(a− 1)

n(n− 1)

and

E(X) = m · a(a− 1)

n(n− 1)
=
a(a− 1)

2(n− 1)
.

Second method: enumerating white balls by 1, 2, . . . , a, define

I ′k :=

{
1 k-th white ball has been paired with a white ball;
0 otherwise.

Then we have X = 1
2

∑a
k=1 I

′
k and consequently E(X) = 1

2

∑a
k=1 E(I ′k). By

symmetry, we have

E(I ′k) = P (I ′k = 1) =
a− 1

n− 1
,

giving

E(X) =
a(a− 1)

2(n− 1)
,

which is the same as before.

Third method: enumerating all possible pairs of white balls by 1, 2, . . . ,
(
a
2

)
, define

I ′′k :=

{
1 the balls in the k-th pair have been drawn together;
0 otherwise.

Similarly as in the first method, we have X =
∑(a

2)
k=1 I

′′
k and consequently E(X) =∑(a

2)
k=1E(I ′′k ). By symmetry, we have

E(I ′′k ) = P (I ′′k = 1) =
1

n− 1
.

giving

E(X) =

(
a

2

)
· 1

n− 1
=
a(a− 1)

2(n− 1)
,

which is again the same as before.
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b. (10) Compute E(XY ).

Solution:

First method: in addition to the indicators from the first method of the solution
of part a., define

Jl =

{
1 both balls in the k-th pair drawn are black;
0 otherwise.

Write

XY =
m∑
k=1

IkJk +
∑

1≤k,l≤m
k 6=l

IkJl

and notice that IkJk = 0 for all k. Similarly as before, we have by linearity

E(XY ) =
∑

1≤k,l≤m
k 6=l

E(IkJl) .

Now recall that
E(IkJl) = P (Ik = 1, Jl = 1) .

Again, by symmetry, the balls in the k-th and l-th pair can be regarded as a
quadruple selected uniformly at random. The probability that the first two balls
are white and the last two are black equals

P (Ik = 1, Jl = 1) =
a(a− 1)b(b− 1)

n(n− 1)(n− 2)(n− 3)
.

As there are exactly m(m− 1) pairs with k 6= l, we have

E(XY ) = m(m− 1) · a(a− 1)b(b− 1)

n(n− 1)(n− 2)(n− 3)
.

Second method: enumerating black balls by 1, 2, . . . , b, define

J ′l :=

{
1 l-th black ball has been paired with a black ball;
0 otherwise.

Now observe that

XY =
1

4

a∑
k=1

b∑
l=1

I ′kJ
′
k , so that E(XY ) =

1

4

a∑
k=1

b∑
l=1

E(I ′kJ
′
k)

and by symmetry,

E(I ′kJ
′
l ) = P (I ′k = 1, J ′l = 1) =

(a− 1)(b− 1)

(n− 1)(n− 3)
.

As a result, we find that

E(XY ) =
ab(a− 1)(b− 1)

4(n− 1)(n− 3)
,
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which is the same as before.

Third method: enumerating all possible pairs of black balls by 1, 2, . . . ,
(
a
2

)
, define

J ′′l :=

{
1 the balls in the l-th pair have been drawn together;
0 otherwise.

Now observe that

XY =

(a
2)∑

k=1

(b
2)∑
l=1

I ′′kJ
′′
k , so that E(XY ) =

(a
2)∑

k=1

(b
2)∑
l=1

E(I ′′kJ
′′
k )

and by symmetry,

E(I ′′kJ
′′
l ) = P (I ′′k = 1, J ′′l = 1) =

1

(n− 1)(n− 3)
.

As a result, we find that

E(XY ) =

(
a

2

)(
b

2

)
· 1

(n− 1)(n− 3)
=
a(a− 1)b(b− 1)

4(n− 1)(n− 3)
,

which is again the same as before.
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3. (20) Let random variables Y and W be independent with Y ∼ exp(1) and W ∼
N(0, 1). Let

X = θY + σ
√
YW ,

where θ > 0 and σ > 0 are given constants.

a. (10) Find the density of the random vector (Y,X).

Solution: define the mapping

Φ(y, w) = (y, θy + σ
√
yw) .

On the open set U = {(y, w) : y > 0} the mapping is bijective and maps U onto
itself. We compute

Φ−1(y, x) =

(
y,
x− θy
σ
√
y

)
.

The differentiability assumptions are satisfied and we compute

JΦ−1(y, x) =
1

σ
√
y
.

It follows

fY,X(y, x) = fY,W

(
y,
x− θy
σ
√
y

)
· JΦ−1(y, x) .

By independence we have fY,W (y, w) = fY (y)fW (w). For (y, x) ∈ U , it follows

fY,X(y, x) =
1√
2π

exp

(
−y − 1

2

(
x− θy
σ
√
y

)2
)
· 1

σ
√
y
,

and fY,X(y, x) = 0 otherwise.

b. (10) Find the density of the random variable X. Assume as known that for a > 0
and b ≥ 0 ∫ ∞

0

e−ay−
b
y

√
y

dy =

√
π√
a
e−2
√
ab .

Solution: we compute the density of X as the marginal density. Integrating we
get

fX(x) =

∫ ∞
0

fY,X(x, y) dy

=
1

σ
√

2π

∫ ∞
0

1
√
y

exp

(
−y − x2

2σ2y
+
θx

σ2
− θ2y

2σ2

)
dy

=
1

σ
√

2π
eθx/σ

2

∫ ∞
0

1
√
y

exp

(
− x2

2σ2y
− (θ2 + 2σ2)y

2σ2

)
dy

=
1

σ
√

2π
eθx/σ

2

√
π√

θ2+2σ2

2σ2

exp

(
−2

√
x2

2σ2
·
√
θ2 + 2σ2

2σ2

)

=
1√

θ2 + 2σ2
e−(|x|

√
θ2+2σ2−θx)/σ2

.
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4. (20) In a deck of a+ b cards there are a white and b red cards. We shuffle the deck
so that every permutation is equally likely. We deal cards from the top of the deck.
Let X be the number of white cards before the first red card and Y the number of
white cards after the last red card. Number the white cards by k = 1, 2, . . . a, and
define

Ik =

{
1 if the k-th white card is before the first red card;
0 otherwise.

and

Jk =

{
1 if the k-th white card is after the last red card;
0 otherwise;

a. (10) Justify that X =
∑a

k=1 Ik. Compute var(X).

Solution: if we consider just the first white card and the red cards, these 1 + b
cards are randomly permuted. The probability that the first white card is before
all red cards is

P (I1 = 1) =
1

b+ 1

and

var(I1) =
b

(b+ 1)2
.

We need

P (I1 = 1, I2 = 1) =
2

(b+ 1)(b+ 2)
,

which we can obtain if we consider just the permutation of two white cards and
b red cards. It follows,

cov(I1, I2) =
b

(b+ 1)2(b+ 2)
.

By symmetry the variances Ik are equal and the covariances of pairs (Ik, Il) are
equal. It follows that

var(X) =
ab

(b+ 1)2
+

a(a− 1)b

(b+ 1)2(b+ 2)
.

b. (10) Compute cov(X, Y ).

Solution: by symmetry we have

E(J1) =
1

b+ 1
.

Furthermore

P (I1 = 1, J1 = 1) = 0 and P (I1 = 1, J2 = 1) =
1

(b+ 1)(b+ 2)
.

Taking into account the bilinearity of the covariance and symmetry we get

cov(X, Y ) =
a∑

k,l=1

cov(Ik, Jl) .

8
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By symmetry, for k 6= l all the covariances are equal. All the covariances
cov(Ik, Jk) are equal too. It follows that

cov(X, Y ) = a cov(I1, J1) + a(a− 1) cov(I1, J2) .

Since I1J1 = 0, it follows

cov(I1, J1) = − 1

(1 + b)2
.

Furthermore,

cov(I1, J2) =
1

(b+ 1)(b+ 2)
− 1

(b+ 1)2
= − 1

(b+ 1)2(b+ 2)
.

We get

cov(X, Y ) = − a

(b+ 1)2
− a(a− 1)

(b+ 1)2(b+ 2)
= − a(a+ b+ 1)

(b+ 1)2(b+ 2)
.
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5. (20) The natural numbers decide to go to a Chinese restaurant, where there are
infinitely many round tables numbered by 1, 2, . . .. Every table can accommodate
infinitely many guests. The natural numbers arrive to the restaurant one by one and
are seated following the rules: 1 sits at table 1. When n arrives, it chooses to sit at
the empty table with the lowest number available with probability 1/n, or it chooses
to sit to the left of i with probability 1/n, independently of the previous numbers
i = 1, 2, 3, . . . , n− 1. Let Xn,i be the number of guests at the i-th table just after the
arrival of number n to the restaurant.

a. (10) Compute the conditional distribution of Xn,1 given the event {Xn−1,1 = l}.

Solution: from the wording of the problem it follows that

P (Xn,1 = l + 1|Xn−1,1 = l) =
l

n
in P (Xn,1 = l|Xn−1,1 = l) =

n− l
n

for l = 1, 2, . . . , n− 1.

b. (10) Compute E(Xn,1).

Solution: From a. we compute

E (Xn,1|Xn−1,1 = l) = l · n− l
n

+ (l + 1) · l
n

=
l(n+ 1)

n
.

We know that E(X1,1) = 1. By the total expectation formula we get

E (Xn,1) =
(n+ 1)

n
· E(Xn−1,1) ,

and it follows

E(Xn,1) =
(n+ 1)n(n− 1) · · · 3

n(n− 1) · · · 2
· E(X1,1) =

n+ 1

2
.
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6. (20) In the Perla Casino in Nova Gorica, the guest Gregoroni won 144,000e playing
roulette. From the records we infer that he persistently played in the same way. In
every game Gregoroni bet 500e. He always placed 200e on a “straight up” bet on
the single number 17, and a “split” bet of 300e on numbers 16 and 17. If the number
17 came up, Gregoroni got the initial stake back and an additional 35 times the bet.
Otherwise he lost the stake. In the “split” case, that is if 16 or 17 came up, Gregoroni
got the initial stake back and in additional 17 times the bet. Otherwise he lost the
stake.

There are 37 numbers on roulette, all are equally likely to be the winning numbers,
and subsequent spins are independent.

a. (10) Denote by X the net profit of the guest in one game for Gregoroni’s betting
strategy. List the possible values of X and its distribution. Compute E(X) and
var(X).

Solution: the possible values for X are −500, if 16 and 17 do not come up
4.900, if 16 is the winning number and 12.100, if 17 is the winning number. The
corresponding probabilities are 35/37, 1/37 in 1/37. We compute

E(X) = −35 · 500

37
+

4.900

37
+

12.100

37
= −500

37
.
= −13, 51 .

We compute

E(X2) =
35 · 5002

37
+

4.9002

37
+

12.1002

37
=

179.170.000

37
.

It follows

var(X) = E(X2)− E(X)2 =
6.629.040.000

1.369
.
= (2.200, 51)2 .

b. (10) Gregoroni won his money in 582 spins. Compute, approximately, the prob-
ability that a guest using Gregroni’s betting strategy wins 144.000e or more in
n = 582 spins of roulette.

Solution: we use the central limit theorem. From the first part of the exercise
we get µ = −13, 51 and σ = 2.200, 51. In the formula we take n = 582. We
compute

P (S582 ≥ 144.000) = P

(
S582 − 582µ√

582σ
≥ 144.000− 582µ√

582σ

)
≈ P (Z ≥ 2, 86)

= 0, 002 .
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