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Instructions

Read carefully the text of the problems before attempting to solve them. Five problems
out of six count for 100%. You are allowed one A4 sheet with formulae and theorems,
and a handbook of mathematics. Time allowed: 120 minutes.
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1. (20) We toss n balls into r boxes where n ≥ 2r. Tosses are independent and we
hit every box with the same probability 1/r. Let Ai be the event that the i-th box
contains exactly two balls for i = 1, 2, . . . , r.

a. (10) Compute the probability P (A1 ∩ A2 ∩ · · · ∩ Ai) for i ≤ r.

Solution: first, we select the pairs of tosses that will land in boxes 1, 2, . . . , i. We
can do this in (

n

2

)(
n− 2

2

)
· · ·
(
n− 2(i− 1)

2

)
=

n!

2i · (n− 2i)!

ways, where 0! = 1. The remaining n − 2i tosses must land in the other r − i
boxes. By independence

P (A1 ∩ A2 ∩ · · · ∩ Ai) =
n!

2i · (n− 2i)!
·
(

1

r

)2i

·
(
r − i
r

)n−2i

,

where 00 = 1.

b. (10) What is the probability that no box will contain exactly two balls? You do
not need to simplify sums and binomial coefficients.

Solution: the event that at least one box will contain exactly 2 balls is ∪ri=1Ai.
By the inclusion-exclusion formula and symmetry we have

P

(
r⋃
i=1

Ai

)
=

r∑
i=1

(−1)i−1

(
r

i

)
n!

2i · (n− 2i)!
·
(

1

r

)2i

·
(
r − i
r

)n−2i

,

while the desired probability is

1− P

(
r⋃
i=1

Ai

)
=

r∑
i=0

(−1)i
(
r

i

)
n!

2i · (n− 2i)!
·
(

1

r

)2i

·
(
r − i
r

)n−2i

.
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2. (20) An urn contains a white and b ≥ 2 black balls. We draw balls at random.
Once a ball is drawn, it is replaced by a white ball irrespective of its color. The draws
are independent. Let X be the number of draws up to and including the first black
ball, and let Y be the number of draws after the first black ball up to and including
the second black ball.

a. (10) Find the joint distribution of X and Y .

Solution: the possible values of the pair (X, Y ) are all integer pairs (k, l) with
k, l ≥ 1. The event {X = k, Y = l} happens if we get k − 1 white balls, a black
ball, then l − 1 white balls and then a black ball. We have

P (X = k, Y = l) =

(
a

a+ b

)k−1

· b

a+ b
·
(
a+ 1

a+ b

)l−1

· b− 1

a+ b
.

The expression simplifies to

P (X = k, Y = l) =
ak−1(a+ 1)l−1b(b− 1)

(a+ b)k+l
.

In other words, X and Y are independent with X ∼ Geom
(

b
a+b

)
and

Y ∼ Geom
(
b+1
a+b

)
.

b. (10) Find the distribution of Z = X + Y .

Solution: for n ≥ 2 we compute

P (Z = n) =
n−1∑
k=1

P (X = k, Y = n− k)

=
b(b− 1)

(a+ b)n

n−1∑
k=1

ak−1(a+ 1)n−k−1

=
b(b− 1)(a+ 1)n−2

(a+ b)n

n−1∑
k=1

(
a

a+ 1

)k−1

=
b(b− 1)(a+ 1)n−2

(a+ b)n
·

1−
(

a
a+1

)n−1

1− a
a+1

=
b(b− 1)(a+ 1)n−2

(a+ b)n
· (a+ 1)n−1 − an−1

(a+ 1)n−2

=
b(b− 1)

(a+ b)n
(
(a+ 1)n−1 − an−1

)
.
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3. (20) Let X and Y be independent with

X ∼ Γ(a, 1) and Y ∼ Γ

(
a+

1

2
, 1

)
.

Define

(U, V ) =

(
2

√
Y

X
, 2
√
XY

)
.

a. (10) Compute the density of the vector (U, V ).

Solution: the map

Φ

(
2

√
y

x
, 2
√
xy

)
is bijective on (0,∞)2 with

Φ−1(u, v) =
(v
u
,
uv

4

)
.

The maps Φ and Φ−1 both have continuous partial derivatives. We compute

JΦ−1(u, v) = det

(
− v
u2

1
u

1
4
v 1

4
u

)
= − v

2u
.

The transformation formula gives

fU,V (u, v) =
1

Γ(a) Γ
(
a+ 1

2

) (v
u

)a−1

e−
v
u

(uv
4

)a− 1
2
e−

uv
4 · v

2u

for u, v > 0; elsewhere, one can set fU,V (u, v) = 0. The density simplifies to

fU,V (u, v) =
1

4a Γ(a) Γ
(
a+ 1

2

) u− 1
2 · v2a− 1

2 · e−
uv
4
− v
u .

b. (10) Find the distribution of V , naming it explicitly.

Hint: you can assume as known that∫ ∞
0

1√
s
e−αs−

β
s ds =

√
π

α
e−2
√
αβ

for all α, β > 0.

Solution: for v > 0, we compute

fV (v) =
v2a− 1

2

4a Γ(a) Γ
(
a+ 1

2

) ∫ ∞
0

1√
u
e−

uv
4
− v
u du

=
v2a− 1

2

4a Γ(a) Γ
(
a+ 1

2

) ·√4π

v
e−v

=

√
π

22a−1 Γ(a) Γ
(
a+ 1

2

) · v2a−1e−v ;
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for v ≤ 0, we can, of course, set fV (v) = 0. Noting that we can ignore a constant
factor, we infer that V ∼ Γ(2a, 1).

Remark: one implication of the above calculation is the Legendre duplication
formula

Γ(2a) =
1√
π

22a−1 Γ(a) Γ

(
a+

1

2

)
.
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4. (20) An urn contains a white and b ≥ 2 black balls. We draw balls at random.
Once a ball is drawn, it is replaced by a white ball irrespective of its color. The draws
are independent. Let X be the number of draws up to and including the first black
ball, and let Y be the number of draws after the first black ball up to and including
the second black ball. Denote ea,b = E(Xa,b) and va,b = var(Xa,b).

a. (5) Let Z be the number of draws until we select the first black ball, including
the first black ball. Show that Z and Xa,b−Z are independent and that Xa,b−Z
has the same distribution as Xa+1,b−1.

Solution: when the first black ball has been drawn, we are left with a+1 white and
b−1 black balls. Given {Z = k}, Xa,b−Z = Xa,b−k is the number of remaining
draws until we select the last black ball. By independence, its conditional distri-
bution of Xa,b − Z given {X = k} is the same as the distribution of Xa+1,b−1,
irrespective of k. However, this means that Xa,b−Z and Z are independent, and
Xa,b − Z has the same distribution as Xa+1,b−1.

b. (10) Compute ea,b. The solution is a sum that you do not need to simplify.

Solution: write
ea,b = E(Xa,b) = E(Z) + E(Xa,b − Z) .

Because Z ∼ Geom(b/(a+ b)), we have

E(Z) =
a+ b

b
.

The second expectation can be deduced from part a., transforming the above for-
mula to

ea,b =
a+ b

b
+ ea+1,b−1 .

Iterating we get

ea,b =
a+ b

b
+
a+ b

b− 1
+ · · ·+ a+ b

2
+ ea+b−1,1 .

We have that

Xa+b−1,1 ∼ Geom

(
1

a+ b

)
and hence

ea+b−1,1 = E(Xa+b−1,1) = a+ b .

Finally,

ea,b = (a+ b)
b∑

k=1

1

k
.

c. (5) Let va,b = var(Xa,b). Show that

va,b =
a(a+ b)

b2
+ va+1,b−1
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and compute va,b. The solution is a sum that you do not need to simplify.

Solution: since the variance of the sum of independent random variables is the
sum of variances, we have

va,b = var(Z) + var(Xa,b − Z) =
a(a+ b)

b2
+ va+1,b−1 .

Iterating we get

va,b =
a(a+ b)

b2
+

(a+ 1)(a+ b)

(b− 1)2
+ · · ·+ (a+ b− 2)(a+ b)

22
+ va+b−1,1 .

Recalling the distribution of Xa+b−1,1, we find that

va+b−1,1 = var(Xa+b−1,1) = (a+ b)(a+ b− 1) ,

concluding that

va,b = (a+ b)
b∑

k=1

a+ b− k
k2

= (a+ b)2

b∑
k=1

1

k2
− (a+ b)

b∑
k=1

1

k
.
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5. (20) Let the random variables I ∼ Bernoulli(p) and W1 be independent, integer
valued and nonnegative. Assume that the variable

W = 1 + I ·W1

has the same distributions as W1.

a. (10) Show that
GW (s) = qs+ psGW (s) ,

where q = 1− p.

Solution: we have
E
(
sW |I = 0

)
= s

and
E
(
sW |I = 1

)
= sE

(
sW1
)

= sGW (s) .

The formula follows from the law for total expectations.

b. (10) What is the distribution of W?

Solution: the first part gives

GW (s) =
qs

1− ps
=
∞∑
k=1

qpk−1sk .

We have
P (W = k) = qpk−1

or W ∼ Geom(q).
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6. (20) A bored statistician draws tickets from one of the boxes below. She denotes
the numbers on the tickets by X1, X2, . . . , Xn, and their sum by Sn.

(i) −1 0 1

(ii) −1 0 0 0 0 0 0 0 1

a. (10) The statistician computes

P (−30 ≤ S1000 ≤ 30) ≈ 0.96 .

Which box is she drawing tickets from? Justify your answer.

Solution: for the first box we get var(X1) = 2/3, and for the second var(X1) =
2/9. Using the central limit theorem and letting Z ∼ N(0, 1), we get

P (−30 ≤ S1000 ≤ 30) = P

(
− 30√

1000
√

2/3
≤ S1000√

var(S1000)
≤ 30√

1000
√

2/3

)

= P

(
−1.16 ≤ S1000√

var(S1000)
≤ 1.16

)
(CLT) ≈ P

(
−1.16 ≤ Z ≤ 1.16

)
.
= 0.75 .

for the first box, and

P (−30 ≤ S1000 ≤ 30) = P

(
− 30√

1000
√

2/9
≤ S1000√

var(S1000)
≤ 30√

1000
√

2/9

)

= P

(
−2.01 ≤ S1000√

var(S1000)
≤ 2.01

)
(CLT) ≈ P

(
−2.01 ≤ Z ≤ 2.01

)
.
= 0.96 .

for the second. The statistician draws from the second box.

b. (10) The statistician computes P (S100 = 0) ≈ 0.049. For which of the two boxes
is the above approximation. Justify your answer.

Solution: using the central limit theorem we approximate for the first box

P (S100 = 0) = P

(
−1

2
≤ S100 ≤

1

2

)
= P

(
− 1

20
√

2/3
≤ S100√

var(S100)
≤ 1

20
√

2/3

)
(CLT) ≈ P

(
−0.061 ≤ Z ≤ 0.061

)
.
= 0.049 .
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Similarly, for the second box we get the approximation P (S100 = 0) ≈ 0.085. The
statistician draws from the first box.
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