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Read carefully the text of the problems before attempting to solve them. Five problems
out of six count for 100%. You are allowed one A4 sheet with formulae and theorems,
and a handbook of mathematics. Time allowed: 120 minutes.
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1. (20) A player rolls a fair die. Assume the rolls are independent. Let Ak be the event
that the rolls k−5, k−4, . . . , k equal 1, 2, 3, 4, 5, 6, respectively. We call this a run end-
ing at k. Fix n and let A = {there is at least one completed run in the first n rolls}.

a. (10) Let 6 ≤ k1 < k2 < . . . < kr ≤ n. What are the possible values for
P (Ak1 ∩ Ak2 ∩ · · · ∩ Akr)?

Solution: if any of the sets {ki, ki + 1, . . . , ki + 5} overlap, the probability of
the intersection is 0. Should this not happen, we must have 6r ≤ n. If the sets
{ki−5, ki−4, . . . , ki} are disjoint for i = 1, 2, . . . , r, the events Ai are independent

with probability
(

1
6

)6
. In this case

P (Ak1 ∩ Ak2 ∩ · · · ∩ Akr) =

(
1

6

)6r

.

b. (10) Find the probability P (A). You do not need to compute the sums explicitly.

Hint: to count in how many ways we can choose non-overlapping sets
{ki−5, ki−4, . . . , ki} for i = 1, 2, . . . , r, collapse the chosen sets into one element.

Solution: we use the inclusion-exclusion formula. For a given r with 6r ≤ n, we
need to count in how many ways we can choose non-overlapping sets {ki−5, ki−
4, . . . , ki} for i = 1, 2, . . . , r. The hint implies that we need to choose r elements
out of n− 5r elements. Finally,

P (A) =
∑

r; 6r≤n

(−1)r−1

(
n− 5r

r

)(
1

6

)6r

.
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2. (20) A standard deck of cards contains 52 cards. There are four aces. The cards are
shuffled well. Let X be the position of the first ace from the top, and Y the position
of the last ace from the top.

a. (10) Find the probabilities P (X = k) for 1 ≤ k ≤ 49.

Solution:

First method: by symmetry the first k cards are a random sample of the 52 cards.
The distribution of the number of aces among these k cards is
HiperGeom(k, 4, 52). The event {X > k} happens if there are no aces in a
random sample of k cards. It follows,

P (X > k) =

(
48
k

)(
52
k

) ,
and

P (X = k) = P (X > k − 1)− P (X > k) =

(
48
k−1

)(
52
k−1

) − (48
k

)(
52
k

) =
4

49− k

(
48
k

)(
52
k

) ,
where we interpret

(
a
b

)
= 0 if b > a.

Second method: consider the positions of the aces in the deck, not distinguishing
between the aces. Out of

(
52
4

)
equiprobable possibilities, there are

(
52−k

3

)
such that

the most upper ace appear in the k-th place. Therefore,

P (X = k) =

(
52−k

3

)(
52
4

)
and it can be verified that this is the same value as the one obtained by the first
method.

b. (10) Find the probabilities P (Y ≤ l|X = k) for 1 ≤ k ≤ 48 and k− l ≥ 3. Derive
the distribution of the pair (X, Y ).

Solution: conditionally on {X = k}, the remaining 52 − k cards contain three
aces, and are well shuffled. The conditional probability P (Y ≤ l|X = k) is equal
to the probability that the cards in positions k+ 1, k+ 2, . . . , l contain three aces.
Hence,

P (Y ≤ l|X = k) =

(
49−k
l−k−3

)(
52−k
l−k

) =

(
l−k

3

)(
52−k

3

) ,
where we interpret

(
a
b

)
= 0 if b < 0; again, one can verify that both forms yield

the same value. Finally,

P (X = k, Y = l) = P (X = k) (P (Y ≤ l|X = k)− P (Y ≤ l − 1|X = k))

=
12

(49− k)(l − k)

(
48
k

)(
49−k
l−k−3

)(
52
k

)(
52−k
l−k

) =

(
l−k−1

2

)(
52
4

) .

The result in the latter form can also be obtained directly: considering the posi-
tions of the four aces in the deck, there are

(
52
4

)
possibilities, among which there

are
(
l−k−1

2

)
with X = k in Y = l.
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3. (20) Let X and Z be independent with X ∼ exp(1) and Z ∼ N(0, 1).

a. (10) Find the density of the vector(
Z,
√

2XZ2
)
.

Solution: the map

Φ(x, z) =
(
z,
√

2xz2
)

takes (0,∞)× R \ {0} bijectively onto R \ {0} × (0,∞). We have

Φ−1(z, w) =

(
w2

2z2
, z

)
,

and
JΦ−1(z, w) = −w

z2
.

The transformation formula gives with W =
√

2XZ2

fZ,W (z, w) = e−
w2

2z2 · 1√
2π

e−
z2

2 · w
z2
.

b. (10) Find the density of W =
√

2XZ2. Assume as known that for a, b > 0∫ ∞
0

1√
u3
e−

a
2u e−bu du =

√
2π

a
e−
√

2ab .

Solution: we need to integrate over z. Noting that the density is even in z for
fixed w, we integrate over (0,∞) instead. Introducing the new variable z2 = y,
we get

fW (w) = 2

∫ ∞
0

f(z, w)dz

=
2√
2π

∫ ∞
0

e−
w2

2z2 e−
z2

2
w

z2
dz

=
2√
2π

∫ ∞
0

e−
w2

2y e−
y
2

w

2
√
y3
dy

=
1√
2π
·
√

2π

w2
e−w w

= e−w .
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4. (20) A player rolls a fair die. Assume the rolls are independent. We say that the
player gets a run of length 6 on roll k, if the numbers of dots on rolls k−5, k−4, . . . , k
are strictly increasing, i. e., 1, 2, 3, 4, 5, 6. Let X be the number of rolls until the player
gets a run of length 6 for the first time.

a. (5) Let B be the event that the first roll produces one dot. Denote α = E(X|B).
Express E(X) using the quantity α.

Solution:

First method: to get a run, the player first has to get one dot. If Y is the number
of rolls until the first one dot we have Y ∼ Geom(1

6
). By independence, we have

E(X|Y = k) = k − 1 + α .

By the formula for total expectation

E(X) =
∞∑
k=1

(k − 1 + α)P (Y = k) = E(Y )− 1 + α .

Knowing that E(Y ) = 6, we get

E(X) = 5 + α .

Second method: again, we apply the formula of total expectation, but we take
the partition {B,Bc} instead, leading to

E(X) = E(X|B)P (B) + E(X|Bc)P (Bc) = 1
6
α + 5

6
E(X|Bc) .

If the first roll does not produce one dot, the game “resets” itself, so that
E(X|Bc) = E(X) + 1. Therefore,

E(X) = 1
6
α + 5

6

(
E(X) + 1

)
.

Solving for E(X), we find that E(X) = 5 + α, which is the same as before.

b. (5) Let

Cl = {no run on the first 6 rolls, and the sixth roll produces l}

for l = 1, 2, . . . , 6. Compute P (Cl).

Solution: we start from the end. The event C6 happens if the last roll produces
a 6 and the first 5 rolls are not 1,2,3,4,5. By independence,

P (C6) =
1

6
·

(
1−

(
1

6

)5
)
.

For the other Cl the event {sixth roll produces l} implies that the player does not
get a run on the first 6 rolls. So P (Cl) = 1

6
.
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c. (10) Compute E(X).

Solution: let Bj be the event that in the first j rolls we get the outcomes 1, 2, . . . , j:
we have B1 = B. Further, let Bj,k be the event that in the first j rolls we get the
outcomes 1, 2, . . . , j, and on the (j + 1)-th roll we get k. We have:

E(X | Bj,1) = j + E(X | B) = j − 5 + E(X) ,

E(X | Bj,j+1) = E(X | Bj+1) ,

and for k ∈ {1, 2, 3, 4, 5, 6} \ {1, j + 1} we get:

E(X | Bj,k) = j + 1 + E(X) .

Next we need to compute the conditional expectations E(X | Bj). We have
E(X | B6) = 6, and for j = 1, 2, 3, 4, 5 :

E
[
X1Bj

]
=

6∑
k=1

E
[
X1Bj,k

]
,

hence

E(X | Bj)P (Bj) =
6∑

k=1

E(X | Bj,k)P (Bj,k) ,

yielding

E(X | Bj) =
6∑

k=1

E(X | Bj,k)
P (Bj,k)

P (Bj)

=
6∑

k=1

E(X | Bj,k)P (Bj,k | Bj)

= 1
6

(
j − 5 + E(X)

)
+ 1

6
E(X | Bj+1) + 4

6

(
j + 1 + E(X)

)
= 5

6
j − 1

6
+ 5

6
E(X) + 1

6
E(X | Bj+1) .

This is a recursion relation. By induction we get

E(X | Bj) = j +
(
1− 6j−6

)
E(X) .

For j = 1 we have
E(X | B1) = 1 +

(
1− 6−5

)
E(X) ,

and at the same time

E(X | B1) = E(X | B) = E(X)− 5 .

Equating the two gives E(X) = 66.
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5. (20) Let X and Y be independent, non-negative, integer valued random variables
with the same distribution. Assume that

P (X = k) =
1

4
P (X + Y = k − 1)

for all k ≥ 1. Let G(s) be the generating function of X and Y .

a. (10) Find an equation that is satisfied by G(s).

Solution: multiply both sides of the above relation by sk and sum over k ≥ 1.
Denoting P (X = 0) = p, we get

∞∑
k=1

P (X = k)sk = GX(s)− p

and
∞∑
k=1

1

4
P (X + Y = k − 1)sk =

s

4
GX+Y (s) .

Since X and Y have the same distribution we have GX+Y (s) = G(s)2. The
desired equation is

G(s)− p =
s

4
G(s)2 .

b. (10) Find the distribution of X.

Hint: first G(1) = 1, and by Newton’s expansion we have that for |x| < 1

√
1− x =

∞∑
k=0

(−1)k
(

1/2

k

)
xk .

Solution: since G(1) = 1, the equation from the first part implies

1− p =
1

4
.

Solving for G(s) we get

G(s) =
2
(

1±
√

1− 3s
4

)
s

.

The coefficients of a generating function must be non-negative. Since
(−1)k

(
1/2
k

)
< 0 for all k = 1, 2, 3, . . ., we have to choose the negative sign for the

root. Expanding into a power series we get

G(s) =
∞∑
k=1

2

(
1/2

k

)
(−1)k−1 3ksk−1

4k
.

Finally,

P (X = k) = 2

(
1/2

k + 1

)
(−1)k

(
3

4

)k+1

.
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6. (20) Berti opens a stand with a game involving three dice. Every game costs 1 euro
and the three dice are rolled. If no sixes show Berti keeps the stake. If exactly one
six shows, Berti returns the stake to the player with additional 1 euro. If exactly two
sixes show, Berti returns the stake to the player with additional 2 euros. If three sixes
show, Berti returns the stake to the player with additional 14 euros. Assume the dice
are fair and that all the rolls are independent.

a. (10) Compute the expected value and the variance of Berti’s profit after n games.

Solution: Let Xi denote Berti’s profit in i-th game. We have:

Xi ∼
(
−14 −2 −1 1

1
216

15
216

75
216

125
216

)
,

We get E(Xi) = 1/36 and var(Xi) = 2735/1296. Denoting Berti’s profit after n
games by Sn we have E(Sn) = n/36 and var(Sn) = 2735n/1296.

b. (10) After approximately how many games will Berti have a positive profit with
approximately 95% probability?

Solution: Denote the unknown number of games by nn. From the central limit
theorem we get that, approximately,

1− Φ

 − 1
36
n√

2735
1296

n

 = Φ

( √
n√

2735

)
= 0.95

or √
n√

2735

.
= 1.645 .

It follows that n is approximately 7400.
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