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1. (20) There are 2n chairs around a round table. For dinner n couples arrive and
the host seats them around the table at random. All possible (2n)! arrangements are
equally likely. Let Xn be the number of couples who sit diametrically to each other.
Denote p(n, k) = P (Xn = k) for 0 ≤ k ≤ n.

a. (10) Compute P (Xn = 0). You do not need to simplify the sums.

Hint: compute the probability of the opposite event {Xn > 0}.

Solution: Let A = {Xn > 0} and let define

Ai = {on i-th and (n+ i)-st chair a couple sit}

for i = 1, 2, . . . , n. It holds A = ∪ni=1Ai. We need probability P (A1∩A2∩· · ·∩Ai).
We need to count the permutations of 2n elements that fit the above intersection.
Among n couples we pick i couples, in each couple one of them and sit him/her
in chairs 1, 2, . . . , i. We can do that on(

n

i

)
2ii!

ways. The rest 2n − 2i people can be seated on the rest chairs arbitrary on
(2n− 2i)! ways. It follows

P (A1 ∩ A2 ∩ · · · ∩ Ai) =

(
n
i

)
2ii!(2n− 2i)!

(2n)!
.

We use inclusion exclusion formula and symmetry and get

P (A) =
n∑

i=1

(−1)i+1

(
n
i

)2
2ii!(2n− 2i)!

2n)!
.

b. (10) Compute P (Xn = k) for k = 1, 2, . . . , n. You do not need to simplify the
sums.

Solution: We choose 2k chairs, where the couples sit diametral and we sit the rest
in such way that they do not sit diametral. There arena

(
n
k

)
choises for diametral

seats. For different choises of k pairs of diametral chairs the above events are
disjoint, their union is excactly the event we are looking for. The counting of the
favorable permutations gives us(

n

k

)2

2kk! · p(n− k, 0)(2n− 2k)! .
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It follows

P (X = k) =

(
n
k

)2
2kk! · b(n− k, 0)(2n− 2k)!

(2n)!
.

We have considered the case when we sit the k couples on diamteral, the others
should not sit in diametral. We can think as the chosen k couples are removed
and the rest n−k couples are seated in a way that none of them sits in diametral.
This question is equivalent to the question from the first part of the exercise, but
for n− k couples.
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2. (20) Let ξ1, ξ2, . . . be independent random variables, uniformly distributed on the
set {1, 2, · · · ,m}, where m > 1 is a given number, i.e.

P (ξk = i) =
1

m

for i = 1, 2 . . . ,m.

a. (10) Define Br = {ξ1 < ξ2 < · · · < ξr} for r ≤ m. Compute the probability of
the event Br.

Solution: We notice that

Br = ∪1≤k1<k2<···<kr≤m {ξ1 = k1, . . . , ξr = kr} .

Events in the union are disjoint and have the probability m−r. There are
(
m
r

)
choises for increasing r-tuples. It follows that

P (Br) =

(
m

r

)(
1

m

)r

.

b. (10) Define Ar = {ξ1 < ξ2 < · · · < ξr} ∩ {ξr+1 ≤ ξr}. Compute the probability
of the event Ar.

Solution: It holds
P (Ar,s) = P (A1,s−r+1) .

It holds
A1,r = Br\Br+1 ,

where Bm+1 = ∅. While Br+1 ⊂ Br, is

P (Ar) =

(
m

r

)(
1

m

)r

−
(

m

r + 1

)(
1

m

)r+1

.
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3. (20) Let the random vector (X, Y ) have the density

fX,Y (x, y) =
1

4π
√

1− ρ2
e
− x2+y2

2(1−ρ2)

(
e
ρxy

1−ρ2 + e
− ρxy

1−ρ2
)

for |ρ| < 1 and ρ 6= 0.

a. (10) Compute the marginal distributions of X and Y and determine whether X
and Y are independent.

Solution: The marginal distribution of random variable X is an integral of bi-
variant:

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy

=
1

4π
√

1− ρ2

∫ ∞
−∞

e
− x2+y2

2(1−ρ2)

(
e
ρxy

1−ρ2 + e
− ρxy

1−ρ2
)

dy

=
1

4π
√

1− ρ2

∫ ∞
−∞

e
−x

2−2ρxy+y2

2(1−ρ2) dy +
1

4π
√

1− ρ2

∫ ∞
−∞

e
−x

2+2ρxy+y2

2(1−ρ2) dy .

Now we notice that in both integrals there is a density of bivariant normal dis-
tribution, where both marginal distributions in both cases are standard normal.
We get

fX(x) =
1

2
· 1√

2π
e−

x2

2 +
1

2
· 1√

2π
e−

x2

2

=
1√
2π

e−
x2

2 .

Similarly we would get that also Y is standardn normal. For ρ 6= 0 holds

fX,Y (x, y) 6= fX(x) fY (y) ,

and the variables X and Y are not independent.

b. (10) Define (U, V ) = (X+Y,X−Y ). Compute the densitiy of the random vector
(U, V ) and of the random variable U .

Solution: The mapping
Φ(x, y) = (x+ y, x− y)

satisfies all the conditions for the usage of transformation formula and its inverse
mapping is

Φ−1(u, v) =
(

1
2
(u+ v), 1

2
(u− v)

)
,
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the Jacobi determinant is

JΦ−1(u, v) = det

(1
2

1
2

1
2
−1

2

)
= −1

2
.

It follows

fU,V (u, v) =
1

8π
√

1− ρ2
e
− u2+v2

4(1−ρ2)

(
e
ρ(u2−v2)
4(1−ρ2) + e

− ρ(u
2−v2)

4(1−ρ2)

)
=

1

8π
√

1− ρ2

(
e
− (1−ρ)u2+(1+ρ)v2

4(1−ρ2) + e
− (1+ρ)u2+(1−ρ)v2

4(1−ρ2)

)
.

The marginal distribution can be obtained by integration. The computations con-
tains two integrals. Without constants the first is equal to∫ ∞

−∞
e
− (1−ρ)u2+(1+ρ)v2

4(1−ρ2) dv = e
− (1−ρ)u2

4(1−ρ2) ·
√

2π
√

2− 2ρ ,

similarly for the second integral. With cancellation summation we get

fU(u) =
1

4
√
π
√

1 + ρ
e−

u2

4(1+ρ) +
1

4
√
π
√

1− ρ
e−

u2

4(1−ρ) .
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4. (20) A group of n ≥ 3 gamblers are sitting around a round table. All of them roll
their own die once; all dice are standard (1 to 6 dots), fair (every number of dots has
equal probability) and the rolls are independent. Denote by W the number of pairs of
gamblers sitting next to each other at the table who roll a neigbouring number of dots.
The numbers from the set {1, 2, 3, 4, 5, 6} are neighbouring numbers if their difference
is 1 in absolute value (4 and 3 are neighbouring numbers, but 6 and 1 are not, and 3
and 3 are not either).

a. (10) Compute E(W ).

Solution: We can write W = I1 + I2 + · · · + In, where Ii is indicator for the
event, where i-th gambler and his right neighbour toss neighbouring numbers.
The probability of this event equals to

E(Ii) =
2

3
· 1

3
+

1

3
· 1

6
=

5

18
,

therefore

E(W ) =
5n

18
.

For computation of the variance there are two classical ways. We can start with

var(W ) = E(W 2)−
(
E(W )

)2

and

E(W 2) =
n∑

i=1

n∑
j=1

E(IiIj) .

Random variable IiIj is indicator of the event, that for i-th and j-th gambler
holds that with their right neighbours toss a neighbouring number. For i = j is
the probability equal to 5/18; there are n such term in the abovve sum. If i-th
and j-th gambler are neighbours, this means that three tosses of neighbouring
gamblers are neighbouring numbers. The probability for this is

E(IiIj) =
2

3
· 1

9
+

1

3
· 1

36
=

1

12
;

there are 2n such terms in above sum. If i and j are neither equal neither
neighbours, the probability is (5/18)2 = 25/324; there are n2 − 3n such terms in
the above sum (here we need the assumption n ≥ 3). We sum up and get

E(W 2) = n · 5

18
+ 2n · 1

12
+ (n2 − 3n) · 25

324
=

25n2 + 69n

324
.

We get:

var(W ) =
23n

108
.
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We can achieve this also wirh covariances:

var(W ) =
n∑

i=1

n∑
j=1

cov(Ii, Ij) =
n∑

i=1

n∑
j=1

E(IiIj)− E(Ii)E(Ij) .

For i = j is cov(Ii, Ij) = 5/18 − (5/18)2 = 65/324. If i-th and j-th gambler
are neighbours cov(Ii, Ij) = 1/12 − 25/324 = 1/162. In every other case is
cov(Ii, Ij) = 0: event that neighbours of i-th and neighbours of j-th gambler toss
neighbouring numbers are independent. We sum up and get:

var(W ) = n · 65

324
+ 2n · 1

162
=

23n

108
,

which is equal as before.

b. (10) Compute var(W ).

Solution: We write S = J1 + J2 + · · · + Jn, where Jj is indicator of the event,
that j-th gambler tosses six dots. For computing covariance of W and S there
are again two standard ways. We can write

cov(W,S) = E(WS)− E(W )E(S)

in

E(WS) =
n∑

i=1

n∑
j=1

E(IiJj) .

Random variables IiIj is indicator for the event where i-th gambler and his right
neighbour toss neighbouring numbers, j-th gamblers tosses six dots. For i = j is
this an event where i-th gambler tosses six dots, his right neighbour tosses five
dots; probability of this event equals to 1/36 and there are n such terms in the
above double sum. If j-th gambler is the right neighbour of the i-th gambler, is this
an event where j-th gambler tosses six and i-th five dots; the probability of this
event is 1/36 and there are n such terms in the sum. If j-th gambler is neither
equal to i-th neither is his right neighbour, the probability is (1/6) · (5/18) =
5/108; there are n2 − 2n such terms in the sum. We sum up and get

E(WS) = 2n · 1

36
+ (n2 − 2n) · 5

108
=

5n2 − 4n

108
.

It holds E(Jj) = 1/6 and consequently E(S) = n/6. We get

var(W ) = − n

27
.
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We can achieve this also with covariances

cov(W ) =
n∑

i=1

n∑
j=1

cov(Ii, Jj) =
n∑

i=1

n∑
j=1

E(IiJj)− E(Ii)E(Jj) .

If i = j or j-th gambler is right neighbour of i-th, it holds cov(Ii, Jj) = 1/36 −
5/108 = −1/54, otherwise cov(Ii, Jj) = 0. We sum up and get

cov(W,S) = − n

27
,

which is the same as before.
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5. (20) Let Z0, Z1, . . . be a branching process. Denote G(s) = E(sZ1).

a. (5) Let Gn(s) be the generating function of the random variable Zn. Show that

Gm+n(s) = Gn(Gm(s)) .

Solution: We know from lectures that

Gn = G ◦G ◦ · · · ◦G .

The claim follows.

b. (15) Denote µn = E(Zn) and σ2
n = var(Zn). Show that

µm+n = µnµm

and
σ2
m+n = µmσ

2
n + µ2

nσ
2
m .

Hint: Differentiate the generating functions.

Solution: With differentiation we get

G′m+n(s) = G′n(Gm(s))G′m(s) .

We consider
lim
s↑1

GX(s) = 1 in lim
s↑1

G′X(s) = E(X)

and get
lim
s↑1

Gm+n(s) = G′n(1)G′m(1) .

The first claim follows. For the second claim we need

lim
s↑1

G′′X(s) = E (X(X − 1)) .

With double differentiation we get

G′′m+n(s) = G′′n(Gm(s))(G′m(s))2 +G′n(Gm(s))G′′m(s) .

When s ↑ 1, we get

σ2
m+n + µ2

m+n − µm+n = (σ2
n + µ2

n − µn)µ2
m + µn(σ2

m + µ2
m − µm) .

We order the terms and use µm+n = µmµm in and we get what we wanted.
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6. (20) A coin is tossed 2n times. The tosses are independent, the probability of heads
showing is p = 1/2. Denote by S2n the number of heads in 2n tosses.

a. (10) Determine as accurately as possible such n that

P (S2n = n) = 0, 01 ?

Use Φ(0, 0125) = 0, 505.

Solution: Tossing coins is equal to choosing slips from the box, where there are
only numbers 0 and 1 available. We know that µ = 1/2 and σ = 1/2. We
compute

P (S2n = n) = P
(
n− 1

2
≤ S2n ≤ n+

1

2

)
= P

(
− 1

2
≤ S2n − n ≤

1

2

)
= P

(
− 1√

2n
≤ S2n − n√

2n/2
≤ 1√

2n

)
≈ P

(
− 1√

2n
≤ Z ≤ 1√

2n

)
= Φ

( 1√
2n

)
− Φ

(
− 1√

2n

)
= 2Φ

( 1√
2n

)
− 1

= 0, 01 .

It follows

Φ
( 1√

2n

)
= 0, 505 ,

therefore
1√
2n

= 0.0125 .

We get n = 3183.

b. (10) Let n = 5.000. What approximately is the probability that the difference
between the number of heads and the number of tails in 2n = 10.000 tosses is
less than 100?

Hint: What should be the number of heads so that the difference between the
number of heads and the number of tails is 100 or less?
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Solution: We should translate the exercise a little bit. The numbers will differ
for less than 100, if the number of heads will from 4950 to 5050. We compute

P (4950 ≤ S2n ≤ 5050) = P (−50 ≤ S2n − 5000 ≤ 50)

= P
(
− 50√

2n/2
≤ S2n − 5000√

2n/2
≤ 50√

2n/2

)
= P

(
− 1 ≤ S2n − 5000√

2n/2
≤≤ 1

)
≈ P (−1 ≤ Z ≤≤ 1

)
= Φ(1)− Φ(−1)

= 0, 68 .
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