UNIVERSITY OF PRIMORSKA FAMNIT, MATHEMATICS

Probability

EXAM

June 11^{th} , 2019

NAME AND SURNAME:

IDENTIFICATION NUMBER:

INSTRUCTIONS

Read carefully the text of the problems before attempting to solve them. Five problems out of six count for 100%. You are allowed one A4 sheet with formulae and theorems. You have two hours.

	Problem	a.	b.	c.	d.	
	1.			•	•	
	2.			•	•	
	3.			•	•	
	4.			•	•	
	5.			•	•	
	6.			•	•	
	Total					
				1	-	

1. (20) There are 2n chairs around a round table. For dinner n couples arrive and the host seats them around the table at random. All possible (2n)! arrangements are equally likely. Let X_n be the number of couples who sit diametrically to each other. Denote $p(n,k) = P(X_n = k)$ for $0 \le k \le n$.

a. (10) Compute $P(X_n = 0)$. You do not need to simplify the sums.

Hint: compute the probability of the opposite event $\{X_n > 0\}$ *.*

Solution: Let $A = \{X_n > 0\}$ and let define

 $A_i = \{on \ i\text{-th and} \ (n+i)\text{-st chair a couple sit}\}$

for i = 1, 2, ..., n. It holds $A = \bigcup_{i=1}^{n} A_i$. We need probability $P(A_1 \cap A_2 \cap \cdots \cap A_i)$. We need to count the permutations of 2n elements that fit the above intersection. Among n couples we pick i couples, in each couple one of them and sit him/her in chairs 1, 2, ..., i. We can do that on

$$\binom{n}{i} 2^i i!$$

ways. The rest 2n - 2i people can be seated on the rest chairs arbitrary on (2n - 2i)! ways. It follows

$$P(A_1 \cap A_2 \cap \dots \cap A_i) = \frac{\binom{n}{i} 2^i i! (2n-2i)!}{(2n)!}.$$

We use inclusion exclusion formula and symmetry and get

$$P(A) = \sum_{i=1}^{n} (-1)^{i+1} \frac{\binom{n}{i}^2 2^i i! (2n-2i)!}{2n!!}.$$

b. (10) Compute $P(X_n = k)$ for k = 1, 2, ..., n. You do not need to simplify the sums.

Solution: We choose 2k chairs, where the couples sit diametral and we sit the rest in such way that they do not sit diametral. There arena $\binom{n}{k}$ choises for diametral seats. For different choises of k pairs of diametral chairs the above events are disjoint, their union is excactly the event we are looking for. The counting of the favorable permutations gives us

$$\binom{n}{k}^2 2^k k! \cdot p(n-k,0)(2n-2k)!.$$

It follows

$$P(X = k) = \frac{\binom{n}{k}^2 2^k k! \cdot b(n - k, 0)(2n - 2k)!}{(2n)!}.$$

We have considered the case when we sit the k couples on diamteral, the others should not sit in diametral. We can think as the chosen k couples are removed and the rest n-k couples are seated in a way that none of them sits in diametral. This question is equivalent to the question from the first part of the exercise, but for n-k couples. **2.** (20) Let ξ_1, ξ_2, \ldots be independent random variables, uniformly distributed on the set $\{1, 2, \cdots, m\}$, where m > 1 is a given number, i.e.

$$P(\xi_k = i) = \frac{1}{m}$$

for i = 1, 2..., m.

a. (10) Define $B_r = \{\xi_1 < \xi_2 < \cdots < \xi_r\}$ for $r \leq m$. Compute the probability of the event B_r .

Solution: We notice that

$$B_r = \bigcup_{1 \le k_1 < k_2 < \dots < k_r \le m} \{\xi_1 = k_1, \dots, \xi_r = k_r\} .$$

Events in the union are disjoint and have the probability m^{-r} . There are $\binom{m}{r}$ choises for increasing r-tuples. It follows that

$$P\left(B_r\right) = \binom{m}{r} \left(\frac{1}{m}\right)^r.$$

b. (10) Define $A_r = \{\xi_1 < \xi_2 < \cdots < \xi_r\} \cap \{\xi_{r+1} \leq \xi_r\}$. Compute the probability of the event A_r .

Solution: It holds

$$P(A_{r,s}) = P(A_{1,s-r+1}) .$$

It holds

$$A_{1,r} = B_r \backslash B_{r+1} ,$$

where $B_{m+1} = \emptyset$. While $B_{r+1} \subset B_r$, is

$$P(A_r) = \binom{m}{r} \left(\frac{1}{m}\right)^r - \binom{m}{r+1} \left(\frac{1}{m}\right)^{r+1}.$$

3. (20) Let the random vector (X, Y) have the density

$$f_{X,Y}(x,y) = \frac{1}{4\pi\sqrt{1-\rho^2}} e^{-\frac{x^2+y^2}{2(1-\rho^2)}} \left(e^{\frac{\rho xy}{1-\rho^2}} + e^{-\frac{\rho xy}{1-\rho^2}}\right)$$

for $|\rho| < 1$ and $\rho \neq 0$.

a. (10) Compute the marginal distributions of X and Y and determine whether X and Y are independent.

Solution: The marginal distribution of random variable X is an integral of bivariant:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$$

= $\frac{1}{4\pi\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2(1-\rho^2)}} \left(e^{\frac{\rho xy}{1-\rho^2}} + e^{-\frac{\rho xy}{1-\rho^2}}\right) \, \mathrm{d}y$
= $\frac{1}{4\pi\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} e^{-\frac{x^2-2\rho xy+y^2}{2(1-\rho^2)}} \, \mathrm{d}y + \frac{1}{4\pi\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} e^{-\frac{x^2+2\rho xy+y^2}{2(1-\rho^2)}} \, \mathrm{d}y.$

Now we notice that in both integrals there is a density of bivariant normal distribution, where both marginal distributions in both cases are standard normal. We get

$$f_X(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + \frac{1}{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Similarly we would get that also Y is standard normal. For $\rho \neq 0$ holds

$$f_{X,Y}(x,y) \neq f_X(x) f_Y(y) \,,$$

and the variables X and Y are not independent.

b. (10) Define (U, V) = (X + Y, X - Y). Compute the density of the random vector (U, V) and of the random variable U.

Solution: The mapping

$$\Phi(x,y) = (x+y, x-y)$$

satisfies all the conditions for the usage of transformation formula and its inverse mapping is

$$\Phi^{-1}(u,v) = \left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right) ,$$

the Jacobi determinant is

$$J_{\Phi^{-1}}(u,v) = \det \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} = -\frac{1}{2}.$$

It follows

$$f_{U,V}(u,v) = \frac{1}{8\pi\sqrt{1-\rho^2}} e^{-\frac{u^2+v^2}{4(1-\rho^2)}} \left(e^{\frac{\rho(u^2-v^2)}{4(1-\rho^2)}} + e^{-\frac{\rho(u^2-v^2)}{4(1-\rho^2)}} \right)$$
$$= \frac{1}{8\pi\sqrt{1-\rho^2}} \left(e^{-\frac{(1-\rho)u^2+(1+\rho)v^2}{4(1-\rho^2)}} + e^{-\frac{(1+\rho)u^2+(1-\rho)v^2}{4(1-\rho^2)}} \right).$$

The marginal distribution can be obtained by integration. The computations contains two integrals. Without constants the first is equal to

$$\int_{-\infty}^{\infty} e^{-\frac{(1-\rho)u^2 + (1+\rho)v^2}{4(1-\rho^2)}} dv = e^{-\frac{(1-\rho)u^2}{4(1-\rho^2)}} \cdot \sqrt{2\pi}\sqrt{2-2\rho},$$

similarly for the second integral. With cancellation summation we get

$$f_U(u) = \frac{1}{4\sqrt{\pi}\sqrt{1+\rho}} e^{-\frac{u^2}{4(1+\rho)}} + \frac{1}{4\sqrt{\pi}\sqrt{1-\rho}} e^{-\frac{u^2}{4(1-\rho)}}.$$

4. (20) A group of $n \ge 3$ gamblers are sitting around a round table. All of them roll their own die once; all dice are standard (1 to 6 dots), fair (every number of dots has equal probability) and the rolls are independent. Denote by W the number of pairs of gamblers sitting next to each other at the table who roll a neigbouring number of dots. The numbers from the set $\{1, 2, 3, 4, 5, 6\}$ are neighbouring numbers if their difference is 1 in absolute value (4 and 3 are neighbouring numbers, but 6 and 1 are not, and 3 and 3 are not either).

a. (10) Compute E(W).

Solution: We can write $W = I_1 + I_2 + \cdots + I_n$, where I_i is indicator for the event, where *i*-th gambler and his right neighbour toss neighbouring numbers. The probability of this event equals to

$$E(I_i) = \frac{2}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{6} = \frac{5}{18},$$

therefore

$$E(W) = \frac{5n}{18}$$

For computation of the variance there are two classical ways. We can start with

$$\operatorname{var}(W) = E(W^2) - \left(E(W)\right)^2$$

and

$$E(W^2) = \sum_{i=1}^n \sum_{j=1}^n E(I_i I_j).$$

Random variable I_iI_j is indicator of the event, that for *i*-th and *j*-th gambler holds that with their right neighbours toss a neighbouring number. For i = j is the probability equal to 5/18; there are n such term in the above sum. If *i*-th and *j*-th gambler are neighbours, this means that three tosses of neighbouring gamblers are neighbouring numbers. The probability for this is

$$E(I_iI_j) = \frac{2}{3} \cdot \frac{1}{9} + \frac{1}{3} \cdot \frac{1}{36} = \frac{1}{12};$$

there are 2n such terms in above sum. If i and j are neither equal neither neighbours, the probability is $(5/18)^2 = 25/324$; there are $n^2 - 3n$ such terms in the above sum (here we need the assumption $n \ge 3$). We sum up and get

$$E(W^2) = n \cdot \frac{5}{18} + 2n \cdot \frac{1}{12} + (n^2 - 3n) \cdot \frac{25}{324} = \frac{25n^2 + 69n}{324}$$

We get:

$$\operatorname{var}(W) = \frac{23n}{108}$$

We can achieve this also with covariances:

$$\operatorname{var}(W) = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}(I_i, I_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} E(I_i I_j) - E(I_i) E(I_j)$$

For i = j is $\operatorname{cov}(I_i, I_j) = 5/18 - (5/18)^2 = 65/324$. If *i*-th and *j*-th gambler are neighbours $\operatorname{cov}(I_i, I_j) = 1/12 - 25/324 = 1/162$. In every other case is $\operatorname{cov}(I_i, I_j) = 0$: event that neighbours of *i*-th and neighbours of *j*-th gambler toss neighbouring numbers are independent. We sum up and get:

$$\operatorname{var}(W) = n \cdot \frac{65}{324} + 2n \cdot \frac{1}{162} = \frac{23n}{108}$$

which is equal as before.

b. (10) Compute var(W).

Solution: We write $S = J_1 + J_2 + \cdots + J_n$, where J_j is indicator of the event, that *j*-th gambler tosses six dots. For computing covariance of W and S there are again two standard ways. We can write

$$cov(W, S) = E(WS) - E(W) E(S)$$

in

$$E(WS) = \sum_{i=1}^{n} \sum_{j=1}^{n} E(I_i J_j).$$

Random variables I_iI_j is indicator for the event where *i*-th gambler and his right neighbour toss neighbouring numbers, *j*-th gamblers tosses six dots. For i = j is this an event where *i*-th gambler tosses six dots, his right neighbour tosses five dots; probability of this event equals to 1/36 and there are *n* such terms in the above double sum. If *j*-th gambler is the right neighbour of the *i*-th gambler, is this an event where *j*-th gambler tosses six and *i*-th five dots; the probability of this event is 1/36 and there are *n* such terms in the sum. If *j*-th gambler is neither equal to *i*-th neither is his right neighbour, the probability is $(1/6) \cdot (5/18) =$ 5/108; there are $n^2 - 2n$ such terms in the sum. We sum up and get

$$E(WS) = 2n \cdot \frac{1}{36} + (n^2 - 2n) \cdot \frac{5}{108} = \frac{5n^2 - 4n}{108}$$

It holds $E(J_j) = 1/6$ and consequently E(S) = n/6. We get

$$\operatorname{var}(W) = -\frac{n}{27}$$

We can achieve this also with covariances

$$\operatorname{cov}(W) = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}(I_i, J_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} E(I_i J_j) - E(I_i) E(J_j).$$

If i = j or j-th gambler is right neighbour of i-th, it holds $cov(I_i, J_j) = 1/36 - 5/108 = -1/54$, otherwise $cov(I_i, J_j) = 0$. We sum up and get

$$\operatorname{cov}(W,S) = -\frac{n}{27},$$

which is the same as before.

- **5.** (20) Let Z_0, Z_1, \ldots be a branching process. Denote $G(s) = E(s^{Z_1})$.
 - a. (5) Let $G_n(s)$ be the generating function of the random variable Z_n . Show that

$$G_{m+n}(s) = G_n(G_m(s)) \,.$$

Solution: We know from lectures that

$$G_n = G \circ G \circ \cdots \circ G$$
.

The claim follows.

b. (15) Denote $\mu_n = E(Z_n)$ and $\sigma_n^2 = \operatorname{var}(Z_n)$. Show that

$$\mu_{m+n} = \mu_n \mu_m$$

and

$$\sigma_{m+n}^2 = \mu_m \sigma_n^2 + \mu_n^2 \sigma_m^2 \,. \label{eq:sigma_m}$$

Hint: Differentiate the generating functions.

Solution: With differentiation we get

$$G'_{m+n}(s) = G'_n(G_m(s)) G'_m(s)$$

We consider

$$\lim_{s \uparrow 1} G_X(s) = 1 \qquad in \qquad \lim_{s \uparrow 1} G'_X(s) = E(X)$$

and get

$$\lim_{s \uparrow 1} G_{m+n}(s) = G'_n(1) G'_m(1) \,.$$

The first claim follows. For the second claim we need

$$\lim_{s\uparrow 1} G_X''(s) = E\left(X(X-1)\right) \,.$$

With double differentiation we get

$$G''_{m+n}(s) = G''_n(G_m(s))(G'_m(s))^2 + G'_n(G_m(s)) G''_m(s) \,.$$

When $s \uparrow 1$, we get

$$\sigma_{m+n}^2 + \mu_{m+n}^2 - \mu_{m+n} = (\sigma_n^2 + \mu_n^2 - \mu_n)\mu_m^2 + \mu_n(\sigma_m^2 + \mu_m^2 - \mu_m).$$

We order the terms and use $\mu_{m+n} = \mu_m \mu_m$ in and we get what we wanted.

6. (20) A coin is tossed 2n times. The tosses are independent, the probability of heads showing is p = 1/2. Denote by S_{2n} the number of heads in 2n tosses.

a. (10) Determine as accurately as possible such n that

$$P(S_{2n} = n) = 0,01?$$

Use $\Phi(0, 0125) = 0,505$.

Solution: Tossing coins is equal to choosing slips from the box, where there are only numbers 0 and 1 available. We know that $\mu = 1/2$ and $\sigma = 1/2$. We compute

$$P(S_{2n} = n) = P\left(n - \frac{1}{2} \le S_{2n} \le n + \frac{1}{2}\right)$$

= $P\left(-\frac{1}{2} \le S_{2n} - n \le \frac{1}{2}\right)$
= $P\left(-\frac{1}{\sqrt{2n}} \le \frac{S_{2n} - n}{\sqrt{2n/2}} \le \frac{1}{\sqrt{2n}}\right)$
 $\approx P\left(-\frac{1}{\sqrt{2n}} \le Z \le \frac{1}{\sqrt{2n}}\right)$
= $\Phi\left(\frac{1}{\sqrt{2n}}\right) - \Phi\left(-\frac{1}{\sqrt{2n}}\right)$
= $2\Phi\left(\frac{1}{\sqrt{2n}}\right) - 1$
= $0, 01.$

It follows

$$\Phi\bigl(\frac{1}{\sqrt{2n}}\bigr) = 0,505\,$$

therefore

$$\frac{1}{\sqrt{2n}} = 0.0125$$
.

We get n = 3183.

b. (10) Let n = 5.000. What approximately is the probability that the difference between the number of heads and the number of tails in 2n = 10.000 tosses is less than 100?

Hint: What should be the number of heads so that the difference between the number of heads and the number of tails is 100 or less?

Solution: We should translate the exercise a little bit. The numbers will differ for less than 100, if the number of heads will from 4950 to 5050. We compute

$$P(4950 \le S_{2n} \le 5050) = P(-50 \le S_{2n} - 5000 \le 50)$$

= $P\left(-\frac{50}{\sqrt{2n/2}} \le \frac{S_{2n} - 5000}{\sqrt{2n/2}} \le \frac{50}{\sqrt{2n/2}}\right)$
= $P\left(-1 \le \frac{S_{2n} - 5000}{\sqrt{2n/2}} \le 1\right)$
 $\approx P(-1 \le Z \le 1)$
= $\Phi(1) - \Phi(-1)$
= $0, 68$.