NAME AND SURNAME:

IDENTIFICATION NUMBER:

UNIVERSITY OF PRIMORSKA FAMNIT, MATHEMATICS PROBABILITY WRITTEN EXAMINATION JUNE 7th, 2021

INSTRUCTIONS

Read carefully the text of the problems before attempting to solve them. Five problems out of six count for 100%. You are allowed one A4 sheet with formulae and theorems, and a handbook of mathematics. Time allowed: 120 minutes.

Question	a.	b.	C.	d.	Total
1.			•	•	
2.			•	•	
3.				•	
4.			•	•	
5.			•	•	
6.			●	•	
Total					

1. (20) Eight positions are arranged in a circle. Every position is independently assigned the value 0 or 1 with probability $\frac{1}{2}$ respectively.

a. (15) Find the probability that no 5 contiguous positions are assigned the value 0.

Solution: let X be the maximum number of contiguous positions that are assigned the value 0. We are looking for

$$P(X < 5) = 1 - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8).$$

There are 2^8 equally likely assignments of 0 and 1. Only one assignment corresponds to the event $\{X = 8\}$, 8 correspond to the event $\{X = 7\}$, and 8 to the event $\{X = 6\}$. For $\{X = 5\}$ we need to have 5 contiguous 0 flanked by 1 and the remaining one can be arbitrary. There are 16 assignments corresponding to $\{X = 5\}$. We have

$$P(X < 5) = 1 - \frac{1+8+8+16}{256} = \frac{223}{256} = 0.8710938.$$

b. (5) Let B be the event that we do not get 5 contiguous positions with 0s assigned, and let A be the event that we get at least 5 contiguous positions with 1s assigned. Find P(A|B).

Solution: we need to compute $P(A \cap B)$. Note that

$$P(A \cap B) = P(A) - P(A \cap B^c).$$

The last intersection is empty so $P(A \cap B) = P(A)$. It follows that

$$P(A|B) = \frac{P(A)}{P(B)} = \frac{33}{223} \doteq 0.148.$$

2. (20) Let $X \sim Bin(n, 1/2)$. For random variables X and Y, suppose that

$$P(X = k, Y = k + 1) = P(X = k) \cdot \frac{n - k}{n},$$

and

$$P(X = k, Y = k - 1) = P(X = k) \cdot \frac{k}{n}$$

for all k = 0, 1, 2, ..., n, and P(X = k, Y = l) = 0 for |k - l| > 1.

a. (10) Find the distribution of Y.

Solution: the distribution of Y is the marginal distribution of (X, Y). We have

$$P(Y = l) = P(X = l + 1, Y = l) + P(X = l - 1, Y = l)$$

Compute

$$P(Y = l) = P(X = l + 1, Y = l) + P(X = l - 1, Y = l)$$

= $P(X = l + 1) \cdot \frac{l + 1}{n} + P(X = l - 1) \cdot \frac{n - l + 1}{n}$
= $\binom{n}{l+1} \left(\frac{1}{2}\right)^n \frac{l + 1}{n} + \binom{n}{l-1} \left(\frac{1}{2}\right)^n \frac{n - l + 1}{n}$
= $\binom{n-1}{l} \left(\frac{1}{2}\right)^n + \binom{n-1}{l-1} \left(\frac{1}{2}\right)^n$
= $\binom{n}{l} \left(\frac{1}{2}\right)^n$.

We used Pascal's identity and interpreted the symbol $\binom{n}{m}$ as 0 when m > n or m < 0. Hence $Y \sim Bin(n, 1/2)$.

b. (10) Compute cov(X, Y).

Solution: we have that E(X) = E(Y) = n/2. For the covariance we need E(XY). We compute

$$\begin{split} E(XY) &= \sum_{k=0}^{n} \left(k(k+1) \, P(X=k,Y=k+1) + k(k-1) \, P(X=k,Y=k-1) \right) \\ &= \sum_{k=0}^{n} \left(k(k+1) \, P(X=k) \, \frac{n-k}{n} + k(k-1) \, P(X=k) \, \frac{k}{n} \right) \\ &= \sum_{k=0}^{n} \frac{k}{n} \, P(X=k) \cdot \left((k+1)(n-k) + (k-1)k \right) \\ &= \sum_{k=0}^{n} \frac{k}{n} \, P(X=k) \cdot \left((n-2)k - n \right) \\ &= \frac{1}{n} \big((n-2) \, E(X^2) - n \, E(X) \big) \, . \end{split}$$

From $\operatorname{var}(X) = n/4$ we obtain $E(X^2) = (n^2 + n)/4$, leading to

$$E(XY) = \frac{1}{n} \left((n-2) \frac{n^2 + n}{4} - n \frac{n}{2} \right)$$
$$= \frac{n^2 - 3n - 2}{4}.$$

Hence

$$cov(X, Y) = -\frac{3n}{4} - \frac{1}{2}.$$

- **3.** (20) Let X, Y and Z be independent with $X, Y \sim N(0, 1)$ and $Z \sim N(0, \frac{1}{2})$.
 - a. (10) Find the density of $W = \sqrt{(X Y)^2 + 4Z^2}$. Hint: for a normal random variable $T \sim N(0, \sigma^2)$ we have

$$T^2 \sim \Gamma\left(\frac{1}{2}, \frac{1}{2\sigma^2}\right)$$

Solution: the difference X - Y is independent of 2Z. Both random variables are normal N(0,2) so the squares are independent $\Gamma(\frac{1}{2}, \frac{1}{4})$ random variables. The sum is $\Gamma(1, \frac{1}{4}) = \exp(\frac{1}{4})$. It follows that

$$P(W \ge w) = P\left(W^2 \ge w^2\right) = e^{-\frac{w^2}{4}}$$

and finally

$$f_W(w) = \frac{w}{2} e^{-\frac{w^2}{4}}$$

for all w > 0; elsewhere, the density vanishes.

b. (5) Show that X + Y, X - Y and Z are independent.

Solution: it is enough to show that X + Y and X - Y are independent. The joint density is of the form

$$c \cdot \exp\left(\frac{-(x+y)^2}{8} - \frac{(x-y)^2}{8}\right)$$

The mixed terms cancel and the density is a product. Independence follows.

c. (5) Let

$$U = \frac{X + Y + \sqrt{(X - Y)^2 + 4Z^2}}{2} \quad \text{and} \quad V = \frac{X + Y - \sqrt{(X - Y)^2 + 4Z^2}}{2}.$$

Find the density of (U, V). State explicitly where the density if different from 0.

Solution: we use the transformation formula. The support of the random variable $X+Y \sim N(0,2)$ is the whole real line, while the support of W is $(0,\infty)$. The map $\Phi(t,w) := \left(\frac{t+w}{2}, \frac{t-w}{2}\right)$ is a bijection from $\mathbb{R} \times (0,\infty)$ onto the set $\{(u,v); u > v\}$. On the latter set, the density of (U,V) will be different from 0. Observe that $\Phi^{-1}(u,v) = (u+v,u-v)$ and $J_{\Phi^{-1}} = 2$. Since X + Y is independent of W, the transformation formula gives

$$f_{U,V}(u,v) = f_{X+Y}(u+v) \cdot f_W(u-v) \cdot 2$$

= $2 \cdot \frac{1}{2\sqrt{\pi}} e^{-\frac{(u+v)^2}{4}} \cdot \frac{(u-v)}{2} e^{-\frac{(u-v)^2}{4}}$

for all u > v. The density simplifies to

$$\frac{u-v}{2\sqrt{\pi}} e^{-\frac{1}{2}(u^2+v^2)} .$$

4. (20) Let X_1, \ldots, X_r be independent with $X_k \sim \text{Po}(\lambda_k)$ for $k = 1, 2, \ldots, r$. Denote $S_r = X_1 + X_2 + \cdots + X_r$.

a. (10) Compute $E(X_k^2|S_r = n)$.

Solution: let

$$\lambda = \lambda_1 + \dots + \lambda_r$$
 and $p_k = \frac{\lambda_k}{\lambda_1 + \dots + \lambda_r}$,

and observe that $S_r \sim Po(\lambda)$ and $S_r - X_k \sim Po(\lambda - \lambda_k)$ are independent. For $0 \le i \le n$ we have

$$P(X_k = i | S_r = n) = \frac{P(X_k = i, S_r - X_k = n - i)}{P(S_r = n)} = \binom{n}{i} p_k^i (1 - p_k)^{n - i},$$

so that the conditional distribution of X_k given $\{S_r = n\}$ is binomial $Bin(n, p_k)$. As a result,

$$E(X_k^2|S_r = n) = np_k(1 - p_k) + n^2 p_k^2 = np_k + (n^2 - n)p_k^2.$$

b. (10) Find $E(X_k X_l | S_r = n)$ for $k \neq l$. *Hint:* try $E((X_k + X_l)^2 | S_r = n)$.

Solution: the random variables other than X_k and X_l and the sum $X_k + X_l$ are independent Poisson random variables with sum S_r . From the first part we have

$$E[(X_k + X_l)^2 | S_r = n] = n(p_k + p_l) + (n^2 - n)(p_k + p_l)^2$$

On the other hand, the conditional expectation is linear, so the above expectation equals

$$E(X_k^2|S_r = n) + 2E(X_kX_l|S_r = n) + E(X_l^2|S_r = n)$$

Subtracting the outer two expectations that we know from the first part, we get

$$E(X_k X_l | S_r = n) = (n^2 - n)p_k p_l.$$

5. (20) Let N, X_1, X_2, \ldots be independent, non-negative integer valued random variables. Assume that X_1, X_2, \ldots are equally distributed. Let $X = X_1 + X_2 + \cdots + X_N$.

a. (10) Is it possible that $X_1 \sim \text{Bernoulli}(p_1)$ and $X \sim \text{Geom}(p_2)$ with $p_1, p_2 \in (0, 1)$? Explain.

Solution: we would have

$$G_X(s) = G_N(G_1(s))$$

which in the above case means

$$G_N(q_1 + p_1 s) = \frac{p_2 s}{1 - q_2 s}$$

where $q_1 = 1 - p_1$ and $q_2 = 1 - p_2$. This implies

$$G_N(u) = \frac{p_2\left(\frac{u-q_1}{p_1}\right)}{1 - q_2\left(\frac{u-q_1}{p_1}\right)}.$$

But

$$P(N = 0) = G_N(0) = -\frac{p_2 q_1}{p_1 + q_1 q_2} < 0.$$

There is no such N.

b. (10) Find a sufficient and necessary condition on p_1 and p_2 to have $X_1 \sim \text{Bernoulli}(p_1)$ and $X \sim \text{Bin}(m, p_2)$ for some N independent of X_1, X_2, \ldots Under that condition find the distribution of N.

Solution: we would have

$$G_N(q_1 + p_1 s) = (q_2 + p_2 s)^m$$

or

$$G_N(u) = \left(q_2 + \frac{p_2(u-q_1)}{p_1}\right)^m$$
.

Rearrange to get

$$G_N(u) = \left(q_2 - \frac{p_2 q_1}{p_1} + \frac{p_2}{p_1}u\right)^m = \left(1 - \frac{p_2}{p_1} + \frac{p_2}{p_1}u\right)^m$$

By expanding the right side by the binomial formula we find the G_N is a generating function if and only if $p_2 \leq p_1$. In this case $N \sim Bin(m, p_2/p_1)$. 6. (20) Consider a game of chance where the player loses $1 \in$ with probability 50%, gains $9 \in$ with probability 5%, and has no loss or gain with probability 45%. Felix plays this game 500 times. Assume that all the games are independent.

a. (10) What, approximately, is the probability that Felix wins $50 \in$ or more in total?

Solution: let X_k be the payout in the k-the game, and let $S_n = X_1 + \cdots + X_n$. We have

$$E(X_1) = -0.05$$
 and $var(X_1) = 4.5475$,

and furthermore

$$E(S_{500}) = 500 E(X_1) = -25$$
 and $var(S_{500}) = 500 var(X_1) = 2273.75$.

Using the continuity correction in the central limit theorem we get

$$P(S_{500} \ge 49.5) = P\left(\frac{S_{500} - E(S_{500})}{\sqrt{\operatorname{var}(S_{500})}} \ge \frac{49.5 - E(S_{500})}{\sqrt{\operatorname{var}(S_{500})}}\right)$$
$$= P\left(\frac{S_{500} - E(S_{500})}{\sqrt{\operatorname{var}(S_{500})}} \ge 1.56\right)$$
$$\approx 1 - \Phi(1.56)$$
$$\doteq 0.059.$$

Precise result: 0.06354382.

b. (10) Assume that Felix indeed wins $50 \in$ or more in total. Approximate the conditional probability that he wins $9 \in$ in the first game.

Solution: if Felix wins $9 \in$ in the first game he has to win $41 \in$ or more in the remaining 499 games. The probability of the intersection is $0.05 \cdot P(S_{499} \ge 41)$. We compute

$$P(S_{499} \ge 40.5) = P\left(\frac{S_{499} - E(S_{499})}{\sqrt{\operatorname{var}(S_{499})}} \ge \frac{40.5 - E(S_{499})}{\sqrt{\operatorname{var}(S_{499})}}\right)$$
$$= P\left(\frac{S_{499} - E(S_{499})}{\sqrt{\operatorname{var}(S_{499})}} \ge 1.37\right)$$
$$\approx 1 - \Phi(1.37)$$
$$\doteq 0.085.$$

Finally,

$$P(X_1 = 9 | S_{500} \ge 50) = \frac{0.05 \cdot P(S_{499} \ge 41)}{P(S_{500} \ge 50)} \doteq 0.072.$$

Precise result: 0.06951523.