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Instructions

Read carefully the text of the problems before attempting to solve them. Five problems
out of six count for 100%. You are allowed one A4 sheet with formulae and theorems,
and a handbook of mathematics. Time allowed: 120 minutes.
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1. (20) Eight positions are arranged in a circle. Every position is independently
assigned the value 0 or 1 with probability 1

2
respectively.

a. (15) Find the probability that no 5 contiguous positions are assigned the value
0.

Solution: let X be the maximum number of contiguous positions that are assigned
the value 0. We are looking for

P (X < 5) = 1− P (X = 5)− P (X = 6)− P (X = 7)− P (X = 8) .

There are 28 equally likely assignments of 0 and 1. Only one assignment corre-
sponds to the event {X = 8}, 8 correspond to the event {X = 7}, and 8 to the
event {X = 6}. For {X = 5} we need to have 5 contiguous 0 flanked by 1 and
the remaining one can be arbitrary. There are 16 assignments corresponding to
{X = 5}. We have

P (X < 5) = 1− 1 + 8 + 8 + 16

256
=

223

256
= 0.8710938 .

b. (5) Let B be the event that we do not get 5 contiguous positions with 0s assigned,
and let A be the event that we get at least 5 contiguous positions with 1s assigned.
Find P (A|B).

Solution: we need to compute P (A ∩B). Note that

P (A ∩B) = P (A)− P (A ∩Bc) .

The last intersection is empty so P (A ∩B) = P (A). It follows that

P (A|B) =
P (A)

P (B)
=

33

223
.
= 0.148 .
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2. (20) Let X ∼ Bin(n, 1/2). For random variables X and Y , suppose that

P (X = k, Y = k + 1) = P (X = k) · n− k
n

,

and

P (X = k, Y = k − 1) = P (X = k) · k
n

for all k = 0, 1, 2, . . . , n, and P (X = k, Y = l) = 0 for |k − l| > 1.

a. (10) Find the distribution of Y .

Solution: the distribution of Y is the marginal distribution of (X, Y ). We have

P (Y = l) = P (X = l + 1, Y = l) + P (X = l − 1, Y = l) .

Compute

P (Y = l) = P (X = l + 1, Y = l) + P (X = l − 1, Y = l)

= P (X = l + 1) · l + 1

n
+ P (X = l − 1) · n− l + 1

n

=

(
n

l + 1

)(
1

2

)n
l + 1

n
+

(
n

l − 1

)(
1

2

)n
n− l + 1

n

=

(
n− 1

l

)(
1

2

)n
+

(
n− 1

l − 1

)(
1

2

)n
=

(
n

l

)(
1

2

)n
.

We used Pascal’s identity and interpreted the symbol
(
n
m

)
as 0 when m > n or

m < 0. Hence Y ∼ Bin(n, 1/2).

b. (10) Compute cov(X, Y ).

Solution: we have that E(X) = E(Y ) = n/2. For the covariance we need
E(XY ). We compute

E(XY ) =
n∑
k=0

(
k(k + 1)P (X = k, Y = k + 1) + k(k − 1)P (X = k, Y = k − 1)

)
=

n∑
k=0

(
k(k + 1)P (X = k)

n− k
n

+ k(k − 1)P (X = k)
k

n

)
=

n∑
k=0

k

n
P (X = k) ·

(
(k + 1)(n− k) + (k − 1)k

)
=

n∑
k=0

k

n
P (X = k) ·

(
(n− 2)k − n

)
=

1

n

(
(n− 2)E(X2)− nE(X)

)
.
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From var(X) = n/4 we obtain E(X2) = (n2 + n)/4, leading to

E(XY ) =
1

n

(
(n− 2)

n2 + n

4
− n n

2

)
=
n2 − 3n− 2

4
.

Hence

cov(X, Y ) = −3n

4
− 1

2
.
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3. (20) Let X, Y and Z be independent with X, Y ∼ N(0, 1) and Z ∼ N
(
0, 1

2

)
.

a. (10) Find the density of W =
√

(X − Y )2 + 4Z2.

Hint: for a normal random variable T ∼ N(0, σ2) we have

T 2 ∼ Γ
(

1
2
, 1

2σ2

)
.

Solution: the difference X −Y is independent of 2Z. Both random variables are
normal N(0, 2) so the squares are independent Γ

(
1
2
, 1

4

)
random variables. The

sum is Γ
(
1, 1

4

)
= exp

(
1
4

)
. It follows that

P (W ≥ w) = P
(
W 2 ≥ w2

)
= e−

w2

4

and finally

fW (w) =
w

2
e−

w2

4

for all w > 0; elsewhere, the density vanishes.

b. (5) Show that X + Y , X − Y and Z are independent.

Solution: it is enough to show that X+Y and X−Y are independent. The joint
density is of the form

c · exp

(
−(x+ y)2

8
− (x− y)2

8

)
.

The mixed terms cancel and the density is a product. Independence follows.

c. (5) Let

U =
X + Y +

√
(X − Y )2 + 4Z2

2
and V =

X + Y −
√

(X − Y )2 + 4Z2

2
.

Find the density of (U, V ). State explicitly where the density if different from 0.

Solution: we use the transformation formula. The support of the random variable
X+Y ∼ N(0, 2) is the whole real line, while the support of W is (0,∞). The map
Φ(t, w) :=

(
t+w

2
, t−w

2

)
is a bijection from R× (0,∞) onto the set {(u, v);u > v}.

On the latter set, the density of (U, V ) will be different from 0. Observe that
Φ−1(u, v) = (u+ v, u− v) and JΦ−1 = 2. Since X + Y is independent of W , the
transformation formula gives

fU,V (u, v) = fX+Y (u+ v) · fW (u− v) · 2

= 2 · 1

2
√
π
e−

(u+v)2

4 · (u− v)

2
e−

(u−v)2

4

for all u > v. The density simplifies to

u− v
2
√
π
e−

1
2

(u2+v2) .
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4. (20) Let X1, . . . , Xr be independent with Xk ∼ Po(λk) for k = 1, 2, . . . , r. Denote
Sr = X1 +X2 + · · ·+Xr.

a. (10) Compute E(X2
k |Sr = n).

Solution: let

λ = λ1 + · · ·+ λr and pk =
λk

λ1 + · · ·+ λr
,

and observe that Sr ∼ Po(λ) and Sr − Xk ∼ Po(λ − λk) are independent. For
0 ≤ i ≤ n we have

P (Xk = i|Sr = n) =
P (Xk = i, Sr −Xk = n− i)

P (Sr = n)
=

(
n

i

)
pik(1− pk)n−i ,

so that the conditional distribution of Xk given {Sr = n} is binomial Bin(n, pk).
As a result,

E(X2
k |Sr = n) = npk(1− pk) + n2p2

k = npk + (n2 − n)p2
k .

b. (10) Find E(XkXl|Sr = n) for k 6= l.

Hint: try E
(
(Xk +Xl)

2|Sr = n
)
.

Solution: the random variables other than Xk and Xl and the sum Xk +Xl are
independent Poisson random variables with sum Sr. From the first part we have

E
[
(Xk +Xl)

2
∣∣Sr = n

]
= n(pk + pl) + (n2 − n)(pk + pl)

2 .

On the other hand, the conditional expectation is linear, so the above expectation
equals

E(X2
k |Sr = n) + 2E(XkXl|Sr = n) + E(X2

l |Sr = n) .

Subtracting the outer two expectations that we know from the first part, we get

E(XkXl|Sr = n) = (n2 − n)pkpl .
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5. (20) Let N,X1, X2, . . . be independent, non-negative integer valued random vari-
ables. Assume that X1, X2, . . . are equally distributed. Let X = X1 +X2 + · · ·+XN .

a. (10) Is it possible that X1 ∼ Bernoulli(p1) and X ∼ Geom(p2) with p1, p2 ∈
(0, 1)? Explain.

Solution: we would have
GX(s) = GN(G1(s)) ,

which in the above case means

GN(q1 + p1s) =
p2s

1− q2s

where q1 = 1− p1 and q2 = 1− p2. This implies

GN(u) =
p2

(
u−q1
p1

)
1− q2

(
u−q1
p1

) .
But

P (N = 0) = GN(0) = − p2q1

p1 + q1q2

< 0 .

There is no such N .

b. (10) Find a sufficient and necessary condition on p1 and p2 to have X1 ∼
Bernoulli(p1) and X ∼ Bin(m, p2) for some N independent of X1, X2, . . . Under
that condition find the distribution of N .

Solution: we would have

GN(q1 + p1s) = (q2 + p2s)
m

or

GN(u) =

(
q2 +

p2(u− q1)

p1

)m
.

Rearrange to get

GN(u) =

(
q2 −

p2q1

p1

+
p2

p1

u

)m
=

(
1− p2

p1

+
p2

p1

u

)m
.

By expanding the right side by the binomial formula we find the GN is a genera-
ting function if and only if p2 ≤ p1. In this case N ∼ Bin(m, p2/p1).
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6. (20) Consider a game of chance where the player loses 1e with probability 50%,
gains 9e with probability 5%, and has no loss or gain with probability 45%. Felix
plays this game 500 times. Assume that all the games are independent.

a. (10) What, approximately, is the probability that Felix wins 50e or more in
total?

Solution: let Xk be the payout in the k-the game, and let Sn = X1 + · · · + Xn.
We have

E(X1) = −0.05 and var(X1) = 4.5475 ,

and furthermore

E(S500) = 500E(X1) = −25 and var(S500) = 500 var(X1) = 2273.75 .

Using the continuity correction in the central limit theorem we get

P (S500 ≥ 49.5) = P

(
S500 − E(S500)√

var(S500)
≥ 49.5− E(S500)√

var(S500)

)

= P

(
S500 − E(S500)√

var(S500)
≥ 1.56

)
≈ 1− Φ(1.56)
.
= 0.059 .

Precise result: 0.06354382.

b. (10) Assume that Felix indeed wins 50e or more in total. Approximate the
conditional probability that he wins 9e in the first game.

Solution: if Felix wins 9e in the first game he has to win 41e or more in the
remaining 499 games. The probability of the intersection is 0.05 · P (S499 ≥ 41).
We compute

P (S499 ≥ 40.5) = P

(
S499 − E(S499)√

var(S499)
≥ 40.5− E(S499)√

var(S499)

)

= P

(
S499 − E(S499)√

var(S499)
≥ 1.37

)
≈ 1− Φ(1.37)
.
= 0.085 .

Finally,

P (X1 = 9|S500 ≥ 50) =
0.05 · P (S499 ≥ 41)

P (S500 ≥ 50)
.
= 0.072 .

Precise result: 0.06951523.

8


