
Sufficiency

Sufficiency is an important concept in theoretical statistics but it also
has practical and computational implications. It formalizes the intuition
that certain summaries of the data contain all the information about the
parameters in the statistical model that we are considering. Once we have
sufficient statistics we can use them to improve the estimates, find optimal
tests, find better algorithms for maximum likelihood estimation, or simply
have a better intuition about the models that we are using.

Two examples

To start we will look at two examples to motivate the definitions.

Example 1: When testing roulette wheels we usually assume that the sub-
sequent spins are independent but not necessarily that the probabilities of
outcomes are equal. The simplest statistics to use is the χ2 defined by

χ2 =
36∑
i=0

(Oi − Ei)2

Ei

where Oi stands for the observed occurencies of the outcome i and Ei for the
expected occurencies for i = 1, 2, . . . , 36. If we have a long series of outcomes
we can “monitor the progress” of the χ2 statistics through time, or look at
segments that look “suspicious”. If we simulate n = 370.000 outcomes on an
ideal wheel and look for the segment of length m = 37.000 which produces
the highest χ2 statistics we get the following results after 200.000 repetitions:

Critical value % exceeding for all data % exeeding, worst segment

58,62 1,03 99,57
67,99 0,11 73,75
76,36 0,011 25,42

Table 1 Simulated percentages of rejection of H0.

If we have the above assumptions of independence and constant probabili-
ties through time we will reject the correct H0 : p0 = p1 = · · · = p36 with
probability almost 1 at the 1% significance level. This is an instance of data
snooping i.e. looking for patterns in the data and basing judgement of these
patterns. The simple example above shows that this is clearly wrong.

Reference:
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https://en.wikipedia.org/wiki/Data_dredging

How can we justify that looking at selected segments of the data is not
the right thing to look at. Denote by N0(n), N1(n), . . . , N36(n) the random
number of occurencies of individual outcomes of the roulette wheel after n
spins. Denote by X1, X2, . . . , Xn the outcomes themselves which means that
X1, X2, . . . , Xn are independent random variables uniformly distributed on
the set {0, 1, . . . , 36}. Probability gives us that

P (X1 = x1, . . . , Xn = xn|N0(n) = n0, . . . , N36(n) = n36) =

(
n!

n0! · · ·n36!

)−1
whatever the probabilities of individual outcomes. This means that if we
know the counters of outcomes there is no “residual information” about the
parameters in knowing the individual outcomes. This means that the coun-
ters capture all the information there is about the parameters in the data.
The mathematical way to say that is that the conditional distribution of the
data given a set of statistics does not depend on the parameters. This is an
instance of a set of sufficent statistics.

Example 2: One of the psychometric models is the Rasch model. The data
are vectors of 0 and 1 indicating the correct response by subject i to question
j. If we denote by Xij the indicatorof the response of subject i to question j
the Rasch model specifies that

P (Xij = xij, i ≤ m, j ≤ n) =
∏
i,j

e(αi−δj)xij

1 + e(αi−δj)

for parameters α = (α1, . . . , αm) and δ = (δ1, . . . , δn). The parameters are
interpreted as abilities of subjects and the difficulty of the problems. Given
the data we need to estimate the parameters. But what quantities capture
the information about the parameters? Denote by

Xi. =
∑
j

Xij and X.j =
∑
i

Xij

the row or column sums in the data matrix. Some elementary mathematics
gives that

P (Xij = xij, i ≤ m, j ≤ n|Xi. = xi., X.j = x.ji ≤ m, j ≤ n) =
1

M
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where M is the total number of possible data matrices with given row and col-
umn sums. Again we see that the parameters do not appear in the conditional
distribution. The row and column sums have captured all the information
there is about the parameters in the data. All estimation procedures and
hypothesis tests should be functions of these sufficient statistics only. This
example has and additional feature that we should point out. We are mostly
interested in the estimation of abilities αi not so much the levels of difficulty
δj. We can compute the conditional probabilities

P (Xij = xij, i ≤ m, j ≤ n|X.j = x.j, j ≤ n) =

∏
i e
αixi.∑∏
i e
αiui.

.

The sum runs over all possible data matrices with prescribed column sums.
The conditional distributions does not contain the parameters δj and can
be used as conditional likelihood function to estimate teh αi. We can say
that the column sums are sufficient for part of the (nuisance) parameters.
Estimation based on conditional likelihood in this case has advantages like
aymptotic normality and consistency.

Reference:

https://en.wikipedia.org/wiki/Rasch_model

Definitions and factorisation theorem
In the two examples we have seen the importance of finding sufficient

statistics in practical situations of judgement and estimation. We need a
precise mathematical definition of the concept of sufrficiency and an easy way
to judge whether a set of statistics is sufficient for the parameters. The setup
will be that we will assume that the data is a sample from a distribution of
a vector or matrix X and the distribution of X is from a parametric family
indexed by the parameter θ ∈ Θ. Let T(X) be a vector of statistics i.e.
functions of X. For each θ and each bounded function f we can compute
the conditional expectation

Eθ (f(X)|T(X)) = ψθ (X)

In general this conditional expectation will depend on θ. If that is not the
case, however, we can claim that the conditional distribution does not depend
on the parameter θ.

Definition: If for every bounded function f the conditional expectation

Eθ (f(X)|T(X))

3



is a function of T only then T is a sufficient statistic for the parameter θ.

Remark: Sufficiency means that T captures all the information about the
parameter θ contained in the data. The conditional distribution may depend
on part of the parameters. Then T is sufficient for those parameters that do
not appear in the conditional distribution.

In the examples we found sufficient statistics explicitely. But how does
one find sufficient statistics easily? The answer is given by the factorisa-
tion theorem. The theorem is valid in great generality but here we will only
treat the case when the distributions involved have a density or a probabil-
ity function. The problem is treated in utmost generality in P. Billingsley,
Probability and Measure, John Wiley and Sons, 1979, p. 400.

Theorem: Suppose we have a family of probability functions or densities of
the form {p(x,θ) : θ ∈ Θ}. Suppose further that T is a function (possibly
vector valued) defined for all x. The statistic T(X) is sufficient if and only
if the probability function or the density can be factorised as

p(x,θ) = g(T(x),θ)h(x)

where g and h are functions and h does not depend on θ.

Proof: First assume that X is discrete. There are countably many points
{x1,x2, . . .} such that

Pθ(X = xi) > 0

and
∑

i Pθ(X = xi) = 1. Suppose the probability function can be factor-
ized as above. Suppose Pθ(T(X) = t) > 0. By definition of conditional
probabilities

Pθ(X = x|T(X) = t)

=
Pθ(X = x,T(X) = t)

Pθ(T(X) = t)

=
Pθ(X = x)

Pθ(T(X) = T(x))

Observe that if T(x) = t then

Pθ(X = x,T(X) = t) = g(t,θ)h(x)
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and
Pθ(T(X) = t) =

∑
{x:T(x)=t}

g(T(x),θ)h(x) .

So

Pθ(X = x|T(X) = t) =
h(x)∑

{x:T(x)=t} h(x)
.

This proves that T(X) is sufficient because the right side does not depend
on θ.

Assume now that T(X) is sufficient. By the law of total probabilities

Pθ(X = x) =
∑
t

Pθ(X = x,T(X) = t) .

Rewrite to get

Pθ(X = x|T(X) = T(x))Pθ(T(X) = T(x)) .

By definition the conditional probability in the last line above only depends
on x but not on θ so we can take it to be the function h. The probability
Pθ(T(X) = T(x)) depends on x only through T(x)) and is therefore of the
form g(T(x),θ) for some g.

The proof in the continuous case is harder and depends on calculations
with conditional expectations.

The most obvious example where sufficient statistics can be found are
exponential families of distributions.

Definition: An exponential family of distributions is given by either
probability functions or densities of the form

p(x,θ) = exp

(
r∑

k=1

ck(θ)Tk(x)

)
h(x)

for some functions c1, . . . , cr.

From the factorization theorem it follows immediately that T = (T1, . . . , Tr)
is a sufficient statistic for the parameter theta. All the usual families (nor-
mal, gamma, Poisson) are exponential distributions.
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Example 3: If X1, . . . , Xn are independent normal then we have that for
X = (X1, . . . , Xn) that

pX(x) =
1

(2π)n/2σn
exp

(
− 1

2σ2

n∑
k=1

[
(xk − x̄)2 + n(x̄− µ)2

])
.

It follows that the pair  (∑
k=1

Xk − X̄)2, X̄


is a set of sufficient statistics for the parameters µ and σ. This is not so easy
to see directly.
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