Rao-Cramérjeva ocena

Suppose $\left\{p(\mathbf{x}, \theta), \theta \in \Theta \subset \mathbb{R}^{k}\right\}$ is a (regular) family of distributions. Define the vector valued score function \mathbf{s} as the column vector with components

$$
\mathbf{s}(\mathbf{x}, \theta)=\frac{\partial}{\partial \theta} \log (p(\mathbf{x}, \theta))=\operatorname{grad}(\log (p(\mathbf{x}, \theta))
$$

and the Fisher information matrix as

$$
\mathbf{I}(\theta)=\operatorname{var}(\mathbf{s})
$$

Remark: If $p(\mathbf{x}, \theta)=0$ define $\log (p(\mathbf{X}, \theta))=0$.
a. Let $\mathbf{t}(\mathbf{X})$ be an unbiased estimator of θ based on the likelihood function, i.e.

$$
E_{\theta}(\mathbf{t}(\mathbf{X}))=\theta
$$

Prove that

$$
E(\mathbf{s})=\mathbf{0} \quad \text { and } \quad E\left(\mathbf{s t}^{T}\right)=\mathbf{I}
$$

Deduce that $\operatorname{cov}(\mathbf{s}, \mathbf{t})=\mathbf{I}$.
Remark: Make liberal assumptions about interchanging integration and differentiation.
b. Let a, c be two arbitrary k-dimensional vectors. Prove that

$$
\operatorname{corr}^{2}\left(\mathbf{a}^{T} \mathbf{t}, \mathbf{c}^{T} \mathbf{s}\right)=\frac{\left(\mathbf{a}^{T} \mathbf{c}\right)^{2}}{\mathbf{a}^{T} \operatorname{var}(\mathbf{t}) \mathbf{a} \cdot \mathbf{c}^{T} \mathbf{I}(\theta) \mathbf{c}}
$$

The correlation coefficient squared is always less or equal 1. Maximize the expression for the correlation coefficient over \mathbf{c} and deduce the RaoCramér inequality.

