THREE PARAMETER GAMMA DISTRIBUTION

Define the incomplete gamma function for x > 0 as

$$\Gamma(a;x) = \frac{1}{\Gamma(a)} \int_0^x t^{a-1} e^{-t} dt$$

and the derivative of the log-gamma function as

$$\psi(x) = \frac{\mathrm{d}\,\log\Gamma(x)}{\mathrm{d}x} = \frac{\Gamma'(x)}{\Gamma(x)}$$

Let X be a random variable with the distribution function

$$F_X(x) = \Gamma(a; (\lambda x)^{\tau}),$$

where a > 0, $\lambda > 0$ and $\tau > 0$ are parameters. Denote $X \sim T\Gamma(a, \lambda, \tau)$.

The unknown parameters will be estimated using the maximum likelihood method. Assume the sample is generated as independent i.i.d. random variables X_1, \ldots, X_n . The log-likelihood function is

$$\ell(a,\lambda,\tau) = a \tau n \log \lambda + n \log \tau - n \log \Gamma(a) + + (a\tau - 1) \sum_{i=1}^{n} \log x_i - \lambda^{\tau} \sum_{i=1}^{n} x_i^{\tau} = n (a\tau \log \lambda + \log \tau - \log \Gamma(a) + (a\tau - 1) \overline{\log x} - \lambda^{\tau} \overline{x^{\tau}}).$$

a. Show that the MLE satisfy the equations

$$\frac{1}{n}\frac{\partial\ell}{\partial\lambda} = \frac{a\,\tau}{\lambda} - \tau\,\lambda^{\tau-1}\,\overline{x^{\tau}} = 0\,,$$

hence

$$\lambda = \left(\frac{\overline{x^{\tau}}}{a}\right)^{-\frac{1}{\tau}}$$

and

$$\log \lambda = -\frac{1}{\tau} \, \log \overline{x^\tau} + \frac{1}{\tau} \, \log a \, .$$

b. Show that

$$\frac{1}{n}\frac{\partial\ell}{\partial a} = \tau \,\log\lambda - \psi(a) + \tau \,\overline{\log x} = 0$$

and

$$\psi(a) - \log a - \tau \overline{\log x} + \log \overline{x^{\tau}} = 0.$$

c. From the partial derivative with respect to τ derive that

$$a = \frac{\overline{x^{\tau}}}{\tau \ (\overline{x^{\tau} \ \log x} - \overline{x^{\tau} \ \overline{\log x}})}.$$

d. Denote the right side of the equation in c. by $g(\tau)$. Show that

$$\psi(g(\tau)) - \log(g(\tau)) - \tau \overline{\log x} + \log \overline{x^{\tau}} = 0,$$

which is an equation that only contains τ . Generate a sample of size n = 1000 from the generalized gamma distribution and plot the graph of the left side of the above equation. What can you say about the uniqueness of the solution?

- e. Compute the Fisher matrix of information $I(a, \lambda, \tau)$.
- f. Generate i.i.d. samples of size n = 1000 and estimate the parameters. Repeat the procedure m = 10000 times. Draw the histograms for the estimates and compute the empirical standard errors. Compare the empirical standard errors with the ones obtained from the Fisher information matrix.
- g. How would you test the hypothesis $H_0: \tau = 1$ vs. $H_1: \tau \neq 1$? Generate the distribution of the test statistic when H_0 holds. Comment.