Logistic Regression

In logistic regression we assume that we sample units from a population. For each unit we have the values of independent variables and the value of the response variable which is binary, 0 and 1 say. The model assumes that the values of the variables are created as independent draws from a distribution $\left(Y, X_{1}, \ldots, X_{m}\right)$ where we assume that

$$
P\left(Y=1 \mid X_{1}=x_{1}, \ldots, X_{m}=x_{m}\right)=\frac{\exp \left(\beta_{0}+\sum_{k=1}^{n} \beta_{k} x_{k}\right)}{1+\exp \left(\beta_{0}+\sum_{k=1}^{n} \beta_{k} x_{k}\right)}
$$

The parameters $\beta_{0}, \beta_{1}, \ldots, \beta_{m}$ are assumed unknown.
The file logistic.dat you have the data. Below is the printout from S-PLUS where the parameters are estimated.

```
*** Import Data ***
Import Successful
File name: /valjhun/mihael/teaching/istat/verstat/data/logit.dat
Data name: logit
Number of rows: }100
Number of columns: 3
Columns:
    Name Type
1 Col1 numeric
2 Col2 numeric
3 Col3 numeric
*** Generalized Linear Model ***
Call: glm(formula = Col1 ~ Col2 + Col3,
    + family = binomial(link = logit),
    + data = logit, na.action = na.exclude,
    + control = list(epsilon = 0.0001, maxit = 50, trace = F))
```

```
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.061219 & -1.047069 & 0.5614318 & 1.049224 & 2.122089
\end{tabular}
Coefficients:
            Value Std. Error t value
(Intercept) 0.05832206 0.06777698 0.8604996
    Col2 0.41705971 0.08130599 5.1295077
    Col3 0.56273870 0.07989416 7.0435527
(Dispersion Parameter for Binomial family taken to be 1 )
    Null Deviance: 1385.81 on 999 degrees of freedom
Residual Deviance: 1252.243 on 997 degrees of freedom
Number of Fisher Scoring Iterations: 3
Correlation of Coefficients:
        (Intercept) Col2
Col2 0.0623449
Col3 -0.0199886 -0.3277031
Analysis of Deviance Table
Binomial model
Response: Col1
Terms added sequentially (first to last)
    Df Deviance Resid. Df Resid. Dev
NULL 999 1385.810
Col2 1 79.92338 998 1305.887
Col3 1 53.64399 997 1252.243
```

a. For the given data $y_{1}, y_{2}, \ldots, y_{n}$ in $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ write the (conditional) likelihood function.
b. Convince yourself (and me) that the parameters are estimated by max-
imum likelihood.
c. Compute the Fisher information matrix.
d. Convince yourself that the standard errors given in the printout are obtained from the Fisher information matrix.
e. How would you test the hypothesis $H_{0}: \beta_{1}=\beta_{2}=0$?

