Kalman filter

Let $\left(\theta_{i}\right)_{i \geq 1}$ in $\left(\xi_{i}\right)_{i \geq 1}$ be two sequences of random vectors of dimensions k and l satisfying the equations

$$
\begin{aligned}
\theta_{n+1} & =\mathbf{a}_{1, n}+\mathbf{A}_{1, n} \theta_{n}+\mathbf{B}_{1, n} \eta_{1, n+1}+\mathbf{C}_{1, n} \eta_{2, n+1} \\
\xi_{n+1} & =\mathbf{a}_{2, n}+\mathbf{A}_{2, n} \theta_{n}+\mathbf{B}_{2, n} \eta_{1, n+1}+\mathbf{C}_{2, n} \eta_{2, n+1}, 1
\end{aligned}
$$

where $\mathbf{a}_{1, n}, \mathbf{a}_{2, n}$ are fixed known vectors of dimensions k and $l, \mathbf{A}_{1, n}, \mathbf{A}_{2, n}$ are matrices of dimensions $k \times k$ and $l \times k, \mathbf{B}_{1, n}, \mathbf{B}_{2, n}$ are matrices of dimensions $k \times k$ and $l \times k, \mathbf{C}_{1, n}$ and $\mathbf{C}_{2, n}$ matrices of dimensions $k \times l$ and $l \times l$ and $\eta_{1, n}$ and $\eta_{2, n}$ i.i.d. sequences of random vectors $N\left(\mathbf{0}, \mathbf{I}_{k}\right)$ in $N\left(\mathbf{0}, \mathbf{I}_{l}\right)$ independent of each other.

Assume that $\left(\theta_{0}, \xi_{0}\right)$ is a multivariate normal vector independent of $\left(\eta_{i, j}\right)_{j \geq 1}, i=$ $1,2, \ldots$ such that

$$
\binom{\theta_{0}}{\xi_{0}} \sim N\left(\binom{\mu_{0}}{\nu_{0}},\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right)\right)
$$

a. Argue that the conditional distribution of $\theta_{n},\left(\theta_{n}, \xi_{n+1}\right)^{T}$ and $\left(\theta_{n+1}, \xi_{n+1}\right)^{T}$ given $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ is multivariate normal. You do not need to give the distribution explicitely.
b. Denote

$$
\mu_{n}=E\left(\theta_{n} \mid \xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \quad \text { in } \quad \gamma_{n}=\operatorname{var}\left\{\theta_{n} \mid \xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}
$$

We know that μ_{n} is the best forecast of θ_{n} based on $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$. Show that the following recursive formulae are valid. Always assume that all the matrices one needs to invert are invertible.

$$
\begin{aligned}
& \mu_{n+1}=\left[\mathbf{a}_{1, n}+\mathbf{A}_{1, n} \mu_{n}\right]+\left[\mathbf{B}_{1, n} \mathbf{B}_{2, n}^{T}+\mathbf{C}_{1, n} \mathbf{C}_{2, n}^{T}+\mathbf{A}_{1, n} \gamma_{n} \mathbf{A}_{2, n}^{T}\right] \\
& \times\left[\mathbf{B}_{2, n} \mathbf{B}_{2, n}^{T}+\mathbf{C}_{2, n} \mathbf{C}_{2, n}^{T}+\mathbf{A}_{2, n} \gamma_{n} \mathbf{A}_{2, n}^{T}\right]^{-1}\left[\xi_{n+1}-\mathbf{a}_{2, n}-\mathbf{A}_{2, n} \mu_{n}\right] \\
& \\
& \gamma_{n+1}= \\
&= {\left[\mathbf{A}_{1, n} \gamma_{n} \mathbf{A}_{1, n}^{T}+\mathbf{B}_{1, n} \mathbf{B}_{1, n}^{T}+\mathbf{C}_{1, n} \mathbf{C}_{1, n}^{T}\right]-} \\
&- {\left[\mathbf{B}_{1, n} \mathbf{B}_{2, n}^{T}+\mathbf{C}_{1, n} \mathbf{C}_{2, n}^{T}+\mathbf{A}_{1, n} \gamma_{n} \mathbf{A}_{2, n}^{T}\right]\left[\mathbf{B}_{2, n} \mathbf{B}_{2, n}^{T}+\mathbf{C}_{2, n} \mathbf{C}_{2, n}^{T}+\mathbf{A}_{2, n} \gamma_{n} \mathbf{A}_{2, n}^{T}\right]^{-1} } \\
& \quad \times {\left[\mathbf{B}_{1, n} \mathbf{B}_{2, n}^{T}+\mathbf{C}_{1, n} \mathbf{C}_{2, n}^{T}+\mathbf{A}_{1, n} \gamma_{n} \mathbf{A}_{2, n}^{T}\right]^{T} . }
\end{aligned}
$$

Remark: These recursion formulae are known as the Kalman-Bucy filter.

Hints:
(i) If $\mathbf{Z}=(\mathbf{X}, \mathbf{Y})^{T}$ is a random vector, such that the conditional distribution of \mathbf{Z} given \mathbf{W} is multivariate normal with parameters

$$
\binom{\mu_{0}}{\nu_{0}} \quad \text { and } \quad\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right)
$$

then the conditional distribution of \mathbf{Y} given (\mathbf{X}, \mathbf{W}) is multivariate normal with parameters

$$
\begin{aligned}
E(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =E(\mathbf{Y} \mid \mathbf{W})+\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1}(\mathbf{X}-E(\mathbf{X} \mid \mathbf{W})) \\
\operatorname{var}\{\mathbf{Y} \mid \mathbf{X}, \mathbf{W}\} & =\boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} .
\end{aligned}
$$

(ii) Let

$$
E\left(\theta_{n+1} \mid \xi_{1}, \xi_{2}, \ldots, \xi_{n+1}\right)=E\left(\theta_{n+1} \mid\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right), \xi_{n+1}\right)
$$

Use (i).
c. Why is the word filter used?

