KALMAN FILTER

Let $(\theta_i)_{i\geq 1}$ in $(\xi_i)_{i\geq 1}$ be two sequences of random vectors of dimensions k and l satisfying the equations

$$\begin{aligned} \theta_{n+1} &= \mathbf{a}_{1,n} + \mathbf{A}_{1,n} \theta_n + \mathbf{B}_{1,n} \eta_{1,n+1} + \mathbf{C}_{1,n} \eta_{2,n+1} \\ \xi_{n+1} &= \mathbf{a}_{2,n} + \mathbf{A}_{2,n} \theta_n + \mathbf{B}_{2,n} \eta_{1,n+1} + \mathbf{C}_{2,n} \eta_{2,n+1} , 1 \end{aligned}$$

where $\mathbf{a}_{1,n}$, $\mathbf{a}_{2,n}$ are fixed known vectors of dimensions k and l, $\mathbf{A}_{1,n}$, $\mathbf{A}_{2,n}$ are matrices of dimensions $k \times k$ and $l \times k$, $\mathbf{B}_{1,n}$, $\mathbf{B}_{2,n}$ are matrices of dimensions $k \times k$ and $l \times k$, $\mathbf{C}_{1,n}$ and $\mathbf{C}_{2,n}$ matrices of dimensions $k \times l$ and $l \times l$ and $\eta_{1,n}$ and $\eta_{2,n}$ i.i.d. sequences of random vectors $N(\mathbf{0}, \mathbf{I}_k)$ in $N(\mathbf{0}, \mathbf{I}_l)$ independent of each other.

Assume that (θ_0, ξ_0) is a multivariate normal vector independent of $(\eta_{i,j})_{j\geq 1}$, $i = 1, 2, \ldots$ such that

$$\begin{pmatrix} \theta_0 \\ \xi_0 \end{pmatrix} \sim N\left(\begin{pmatrix} \mu_0 \\ \nu_0 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}\right)$$

- a. Argue that the conditional distribution of θ_n , $(\theta_n, \xi_{n+1})^T$ and $(\theta_{n+1}, \xi_{n+1})^T$ given $(\xi_1, \xi_2, \ldots, \xi_n)$ is multivariate normal. You do not need to give the distribution explicitly.
- b. Denote

$$\mu_n = E(\theta_n | \xi_1, \xi_2, \dots, \xi_n) \quad \text{in} \quad \gamma_n = \operatorname{var}\{\theta_n | \xi_1, \xi_2, \dots, \xi_n\}.$$

We know that μ_n is the best forecast of θ_n based on $\xi_1, \xi_2, \ldots, \xi_n$. Show that the following recursive formulae are valid. Always assume that all the matrices one needs to invert are invertible.

$$\mu_{n+1} = [\mathbf{a}_{1,n} + \mathbf{A}_{1,n}\mu_n] + [\mathbf{B}_{1,n}\mathbf{B}_{2,n}^T + \mathbf{C}_{1,n}\mathbf{C}_{2,n}^T + \mathbf{A}_{1,n}\gamma_n\mathbf{A}_{2,n}^T] \\ \times [\mathbf{B}_{2,n}\mathbf{B}_{2,n}^T + \mathbf{C}_{2,n}\mathbf{C}_{2,n}^T + \mathbf{A}_{2,n}\gamma_n\mathbf{A}_{2,n}^T]^{-1}[\xi_{n+1} - \mathbf{a}_{2,n} - \mathbf{A}_{2,n}\mu_n]$$

$$\begin{split} \gamma_{n+1} &= \\ &= \left[\mathbf{A}_{1,n} \gamma_n \mathbf{A}_{1,n}^T + \mathbf{B}_{1,n} \mathbf{B}_{1,n}^T + \mathbf{C}_{1,n} \mathbf{C}_{1,n}^T \right] - \\ &- \left[\mathbf{B}_{1,n} \mathbf{B}_{2,n}^T + \mathbf{C}_{1,n} \mathbf{C}_{2,n}^T + \mathbf{A}_{1,n} \gamma_n \mathbf{A}_{2,n}^T \right] \left[\mathbf{B}_{2,n} \mathbf{B}_{2,n}^T + \mathbf{C}_{2,n} \mathbf{C}_{2,n}^T + \mathbf{A}_{2,n} \gamma_n \mathbf{A}_{2,n}^T \right]^{-1} \\ &\times \left[\mathbf{B}_{1,n} \mathbf{B}_{2,n}^T + \mathbf{C}_{1,n} \mathbf{C}_{2,n}^T + \mathbf{A}_{1,n} \gamma_n \mathbf{A}_{2,n}^T \right]^T. \end{split}$$

Remark: These recursion formulae are known as the Kalman-Bucy filter.

Hints:

(i) If $\mathbf{Z} = (\mathbf{X}, \mathbf{Y})^T$ is a random vector, such that the conditional distribution of \mathbf{Z} given \mathbf{W} is multivariate normal with parameters

$$\left(\begin{array}{c}\mu_0\\\nu_0\end{array}\right)\quad and\quad \left(\begin{array}{cc}\Sigma_{11} & \Sigma_{12}\\\Sigma_{21} & \Sigma_{22}\end{array}\right)$$

then the conditional distribution of \mathbf{Y} given (\mathbf{X}, \mathbf{W}) is multivariate normal with parameters

$$E(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = E(\mathbf{Y}|\mathbf{W}) + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{X} - E(\mathbf{X}|\mathbf{W}))$$

var{ $\{\mathbf{Y}|\mathbf{X}, \mathbf{W}\} = \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}.$

(ii) Let

$$E(\theta_{n+1}|\xi_1,\xi_2,\ldots,\xi_{n+1}) = E(\theta_{n+1}|(\xi_1,\xi_2,\ldots,\xi_n),\xi_{n+1})$$

Use (i).

c. Why is the word filter used?