Mixed effects model

Let $\mathbf{Y}=\mathbf{X} \beta+\epsilon$ be a linear model where we assume $E(\epsilon)=\mathbf{0}$ in $\operatorname{var}(\epsilon)=$ $\sigma^{2} \boldsymbol{\Sigma}$ for a known invertible matrix $\boldsymbol{\Sigma}$.
a. Show that the BLUE for β is given by

$$
\hat{\beta}=\left(\mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{Y} .
$$

Assume that $\mathbf{X}^{\prime} \mathbf{\Sigma}^{-1} \mathbf{X}$ is invertible and use the Gauss-Markov theorem.
b. Assume that the linear model is of the form

$$
Y_{k l}=\alpha+\beta x_{k l}+u_{k}+\epsilon_{k l},
$$

$k=1,2, \ldots, K$ in $l=1,2, \ldots, L_{k}$ where $\epsilon_{k l}$ are $N\left(0, \sigma^{2}\right)$ and u_{k} are $N\left(0, \tau^{2}\right)$ and all random quantities are independent. Assume that the ratio τ^{2} / σ^{2} is known. Show that the BLUE is given by

$$
\binom{\hat{\alpha}}{\hat{\beta}}=\left(\begin{array}{cc}
\sum w_{k} & \sum w_{k} \bar{x}_{k} \\
\sum w_{k} \bar{x}_{k} & S_{x x}+\sum w_{k} \bar{x}_{k}^{2}
\end{array}\right)^{-1}\binom{\sum w_{k} \bar{y}_{k}}{S_{x y}+\sum w_{k} \bar{x}_{k} \bar{y}_{k}},
$$

where

$$
\begin{aligned}
w_{k} & =L_{k} \sigma^{2} /\left(\sigma^{2}+L_{k} \tau^{2}\right) \\
S_{x x} & =\sum_{k} \sum_{l}\left(x_{k l}-\bar{x}_{k}\right)^{2} \\
S_{x y} & =\sum_{k} \sum_{l}\left(x_{k l}-\bar{x}_{k}\right)\left(y_{k l}-\bar{y}_{k}\right) .
\end{aligned}
$$

Hint: For $c \neq-1 / n$ one has $\left(\mathbf{I}+c \mathbf{1 1}^{\prime}\right)^{-1}=\mathbf{I}-c(1+n c)^{-1} \mathbf{1 1}^{\prime}$ where $\mathbf{1}=(1,1, \ldots, 1)$.
c. What would you do if the ratio τ^{2} / σ^{2} were unknown?
d. How would you test the hypothesis $H_{0}: \beta=0$ versus $H_{1}: \beta \neq 0$? What is the distribution of the test statistic under the null-hypothesis?

