Regression with dependent errors

Assume the regression model

$$
\begin{aligned}
& Y_{i 1}=\alpha+\beta x_{i 1}+\epsilon_{i} \\
& Y_{i 2}=\alpha+\beta x_{i 2}+\eta_{i}
\end{aligned}
$$

for $i=1,2, \ldots, n$. In other words the observation come in pairs. Assume that $E\left(\epsilon_{i}\right)=E\left(\eta_{i}\right)=0, \operatorname{var}\left(\epsilon_{i}\right)=\operatorname{var}\left(\eta_{i}\right)=\sigma^{2}$ and $\operatorname{corr}\left(\epsilon_{i}, \eta_{i}\right)=\rho \in(-1,1)$. Assume that the pairs $\left(\epsilon_{1}, \eta_{1}\right), \ldots,\left(\epsilon_{n}, \eta_{n}\right)$ are uncorrelated. Furthermore assume that

$$
\sum_{i=1}^{n} x_{i 1} x_{i 2}=0
$$

a. Assume that ρ is known. Find the best linear unbiased estimate of the regression parameters α and β. Find an unbiased estimator of σ^{2}.
b. Assume that ρ is unknown and let $\hat{\alpha}$ and $\hat{\beta}$ be the ordinary least squares estimators of the regression parameters. Compute the standard errors of the two estimators.
c. Let $\hat{\epsilon}_{i}$ and $\hat{\eta}_{i}$ be the residuals from ordinary least squares. Express

$$
E\left[\sum_{i=1}^{n}\left(\hat{\epsilon}_{i}^{2}+\hat{\eta}_{i}^{2}\right)\right]
$$

and

$$
E\left[\sum_{i=1}^{n} \hat{\epsilon}_{i} \hat{\eta}_{i}\right]
$$

with the elements of the hat matrix \mathbf{H}.
d. Give an estimate of $\operatorname{var}(\hat{\alpha})$ and $\operatorname{var}(\hat{\beta})$. Are the estimators unbiased?

