REGRESSION WITH DEPENDENT ERRORS

Assume the regression model

$$Y_{i1} = \alpha + \beta x_{i1} + \epsilon_i$$

$$Y_{i2} = \alpha + \beta x_{i2} + \eta_i$$

for i = 1, 2, ..., n. In other words the observation come in pairs. Assume that $E(\epsilon_i) = E(\eta_i) = 0$, $\operatorname{var}(\epsilon_i) = \operatorname{var}(\eta_i) = \sigma^2$ and $\operatorname{corr}(\epsilon_i, \eta_i) = \rho \in (-1, 1)$. Assume that the pairs $(\epsilon_1, \eta_1), \ldots, (\epsilon_n, \eta_n)$ are uncorrelated. Furthermore assume that

$$\sum_{i=1}^{n} x_{i1} x_{i2} = 0.$$

- a. Assume that ρ is known. Find the best linear unbiased estimate of the regression parameters α and β . Find an unbiased estimator of σ^2 .
- b. Assume that ρ is unknown and let $\hat{\alpha}$ and $\hat{\beta}$ be the ordinary least squares estimators of the regression parameters. Compute the standard errors of the two estimators.
- c. Let $\hat{\epsilon}_i$ and $\hat{\eta}_i$ be the residuals from ordinary least squares. Express

$$E\left[\sum_{i=1}^{n} \left(\hat{\epsilon}_{i}^{2} + \hat{\eta}_{i}^{2}\right)\right]$$

and

$$E\left[\sum_{i=1}^{n} \hat{\epsilon}_i \hat{\eta}_i\right]$$

with the elements of the hat matrix **H**.

d. Give an estimate of $var(\hat{\alpha})$ and $var(\hat{\beta})$. Are the estimators unbiased?