Contingency tables

A 2×2 contingency table is of the form

n_{11}	n_{12}
n_{21}	n_{22}

We assume that $n_{i j}$ is the count of units in a sample that posses property i and property j. Assume that the sample is simple random with replacement of size $n=n_{11}+n_{12}+n_{21}+n_{22}$. If $N_{i j}$ is the random number of units with property i and property j in the sample then

$$
\begin{aligned}
& P\left(N_{11}=n_{11}, N_{12}=n_{12}, N_{21}=n_{21}, N_{22}=n_{22}\right)= \\
& \quad=\frac{n!}{n_{11}!n_{12}!n_{21}!n_{22}!} p_{11}^{n_{11}} p_{12}^{n_{12}} p_{21}^{n_{21}} p_{22}^{n_{22}}
\end{aligned}
$$

for parameters $p_{11}+p_{21}+p_{12}+p_{22}=1$.
a. Find the maximum likelihood estimates for the parameters if the parameter space is

$$
\Omega=\left\{\left(p_{11}, p_{12}, p_{21}, p_{22}\right): p_{i j} \geq 0, \sum_{i j} p_{i j}=1\right\}
$$

What is the dimension of this parameter sapce?
b. Find the maximum likelihood estimates for the parameters if the parameter space is restricted to

$$
\Omega_{0}=\left\{\left(p_{11}, p_{12}, p_{21}, p_{22}\right): p_{i j} \geq 0, \sum_{i j} p_{i j}=1, p_{11} p_{22}-p_{12} p_{21}=0\right\}
$$

c. Find the likelihood ratio statistic for the testing problem $H_{0}: \theta \in \Omega_{0}$ versus $H_{1}: \theta \in \Omega \backslash \Omega_{0}$. When would you reject H_{0} if the probability of Type I error is to be α ?
d. The usual χ^{2}-test for contingency tables is given by

$$
\chi^{2}=\sum_{i, j} \frac{\left(n_{i j}-\hat{n}_{i j}\right)^{2}}{\hat{n}_{i j}}
$$

where $\hat{n}_{i j}=n \hat{p}_{i j}$ and $\hat{p}_{i j}$ is the estimate from b. Show that the usual χ^{2}-test and the Wilks's λ are approximations of each other.

Hint: Expand the logarithms into Taylor series up to the second degree terms.
e. Would a similar argument hold for contingency tables of higher dimensions?

