CLUSTER SAMPLING WITH ESTIMATION

Suppose a population of size N is divided into K = N/M groups of size M. We select a sample of size n = km the following way:

- First we select k groups out of K groups by simple random sampling.
- We then select *m* units in each group selected on the first step by simple random sampling.
- The estimate of the population mean is the average \bar{Y} of the sample.

Let μ_i be the population average in the *i*-th group for i = 1, 2, ..., K, and let σ_i^2 be the population variance in the *i*-th group for i = 1, 2, ..., K.

a. Show that we can write the estimator as

$$\bar{Y} = \frac{1}{k} \sum_{i=1}^{K} \bar{Y}_i I_i \,,$$

where

$$I_i = \begin{cases} 1 & \text{if the } i\text{-th group is selected.} \\ 0 & \text{otherwise} \end{cases}$$

and \bar{Y}_i is the sample average in the *i*-th group for $i = 1, 2, \ldots, K$. Argue that it is reasonable to assume that the random variables $\bar{Y}_1, \ldots, \bar{Y}_K$ are independent and independent from I_1, \ldots, I_K . Show that \bar{Y} is an unbiased estimator of the population mean μ and show that the variance of \bar{Y} is

$$\operatorname{var}(\bar{Y}) = \frac{M-m}{k(M-1)m} \cdot \frac{1}{K} \sum_{i=1}^{K} \sigma_i^2 + \frac{K-k}{k(K-1)} \cdot \frac{1}{K} \sum_{i=1}^{K} (\mu_i - \mu)^2.$$

b. Suggest an estimate for the quantity

$$\sigma_b^2 = \frac{1}{K} \sum_{i=1}^K (\mu_k - \mu)^2 = \frac{1}{K} \sum_{i=1}^K \mu_k^2 - \mu^2.$$

Is your estimate unbiased? Can you modify it to be an unbiased estimate?