University of Luubluana
 Doctoral Programme in Statistics
 Methodology of Statistical Research
 Written examination

June $29^{\text {th }}, 2021$

NAME AND SURNAME: \qquad ID NUMBER: \square

Instructions

Read carefully the wording of the problem before you start. There are four problems altogeher. You may use a A4 sheet of paper and a mathematical handbook. Please write all the answers on the sheets provided. You have two hours.

Problem	a.	b.	c.	d.	
1.				\bullet	
2.			\bullet	\bullet	
3.				\bullet	
4.					
Total					

1. (25) Suppose the population is stratified into K strata of sizes N_{1}, \ldots, N_{K}. Denote by μ_{k} the population mean in stratum k and by σ_{k}^{2} the population variance in stratum k for $k=1,2, \ldots, K$. Let μ be the population mean for the whole population and σ^{2} the population variance for the whole population. Suppose a stratified sample is taken with sample sizes in each stratum equal to $n_{1}, n_{2}, \ldots, n_{K}$. Let \bar{X}_{k} be the sample mean in stratum k and let

$$
\bar{X}=\sum_{k=1}^{K} \frac{N_{k}}{N} \bar{X}_{k}=\sum_{k=1}^{K} w_{k} \bar{X}_{k} .
$$

a. (5) Compute $E\left[\left(\bar{X}_{k}-\bar{X}\right)^{2}\right]$.

Solution: We compute

$$
\begin{aligned}
E\left[\left(\bar{X}_{k}-\bar{X}\right)^{2}\right]= & \operatorname{var}\left(\bar{X}_{k}-\bar{X}\right)+\left(E\left(\bar{X}_{k}-\bar{X}\right)\right)^{2} \\
= & \operatorname{var}\left(\bar{X}_{k}\right)+\operatorname{var}(\bar{X})-2 \operatorname{cov}\left(\bar{X}_{k}, \bar{X}\right)+\left(\mu_{k}-\mu\right)^{2} \\
= & \frac{\sigma_{k}^{2}}{n_{k}} \cdot \frac{N_{k}-n_{k}}{N_{k}-1}+\sum_{i=1}^{K} w_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}} \cdot \frac{N_{i}-n_{i}}{N_{i}-1} \\
& \quad-2 w_{k} \cdot \frac{\sigma_{k}^{2}}{n_{k}} \cdot \frac{N_{k}-n_{k}}{N_{k}-1}+\left(\mu_{k}-\mu\right)^{2} .
\end{aligned}
$$

b. (10) Suggest an unbiased estimator for the quantity

$$
\gamma^{2}=\sum_{k=1}^{K} w_{k}\left(\mu_{k}-\mu\right)^{2}
$$

Explain why the suggested estimator is unbiased.
Solution: Since we have unbiased estimators for σ_{k}^{2} the quantity

$$
\hat{\gamma}_{k}^{2}=\left(\bar{X}_{k}-\bar{X}\right)^{2}-\frac{\hat{\sigma}_{k}^{2}}{n_{k}} \cdot \frac{N_{k}-n_{k}}{N_{k}-1}-\sum_{i=1}^{K} w_{i}^{2} \cdot \frac{\hat{\sigma}_{i}^{2}}{n_{i}} \cdot \frac{N_{i}-n_{i}}{N_{i}-1}+2 w_{k} \cdot \frac{\hat{\sigma}_{k}^{2}}{n_{k}} \cdot \frac{N_{k}-n_{k}}{N_{k}-1}
$$

is an unbiased estimator of $\left(\mu_{k}-\mu\right)^{2}$. Multiplying γ_{k}^{2} by w_{k} and summing over k we get an unbiased estimator of γ^{2}.
c. (10) Suggest an unbiased estimator of the population variance σ^{2}. Explain why your estimator is unbiased.

Hint: check that

$$
\sigma^{2}=\sum_{k=1}^{K} w_{k} \sigma_{k}^{2}+\sum_{k=1}^{K} w_{k}\left(\mu_{k}-\mu\right)^{2}
$$

Solution: We write

$$
\sigma^{2}=\sum_{k=1}^{K} w_{k} \sigma_{k}^{2}+\gamma^{2} .
$$

Since both terms on the right can be estimated in an unbiased way we have that

$$
\hat{\sigma}^{2}=\sum_{k=1}^{K} w_{k} \hat{\sigma}_{k}^{2}+\hat{\gamma}^{2}
$$

is an unbiased estimator of $\hat{\sigma}^{2}$.
2. (25) Assume the data $x_{1}, x_{2}, \ldots, x_{n}$ are an i.i.d. sample from the distribution with density

$$
f(x)=\frac{\alpha}{2}|x|^{\alpha-1} e^{-|x|^{\alpha}}
$$

for $\alpha>0$.
a. (15) Write the equation for the MLE estimate of α. Compute the Fisher information $I(\alpha)$. Assume as known that

$$
\int_{0}^{\infty} x^{2 \alpha-1} \log ^{2} x e^{-x^{\alpha}} \mathrm{d} x=\frac{\pi^{2}}{6 \alpha^{3}}-\frac{(2-\gamma) \gamma}{\alpha^{3}}
$$

where $\gamma=0.577216$ is the Euler constant.
Solution: The log-likelihood function is given by

$$
\ell\left(\alpha \mid x_{1}, \ldots, x_{n}\right)=n \log (\alpha)-n \log 2+(\alpha-1) \sum_{k=1}^{n} \log \left|x_{k}\right|-\sum_{k=1}^{n}\left|x_{k}\right|^{\alpha} .
$$

Setting the derivative to 0 we get the equation

$$
\frac{n}{\alpha}+\sum_{k=1}^{n} \log \left|x_{k}\right|-\sum_{k=1}^{n}|x|^{\alpha} \log \left|x_{k}\right|=0 .
$$

For the Fisher information we compute

$$
\ell^{\prime \prime}=-\frac{1}{\alpha^{2}}-|x|^{\alpha} \log ^{2}|x| .
$$

We get

$$
\begin{aligned}
I(\alpha) & =\frac{1}{\alpha^{2}}+\frac{\alpha}{2} \int_{-\infty}^{\infty}|x|^{2 \alpha-1} \log ^{2}|x| e^{-|x|^{\alpha}} \\
& =\frac{1}{\alpha^{2}}-\frac{\pi^{2}}{12 \alpha^{2}}-\frac{(2-\gamma) \gamma}{2 \alpha^{2}} .
\end{aligned}
$$

b. (10) Suppose you knew the MLE estimate $\hat{\alpha}$. Write explicitely the approximate 99\%-confidence interval for α.

Rešitev: The approximate standard error is given by

$$
\operatorname{se}(\hat{\alpha})=\sqrt{\frac{1}{n I(\hat{\alpha})}}
$$

and $z_{\alpha}=2.56$. The approximate confidence interval is

$$
\hat{\alpha} \pm 2.56 \cdot \operatorname{se}(\hat{\alpha}) .
$$

3. (25) Assume the observations x_{1}, \ldots, x_{n} are an i.i.d.sample from the $\Gamma(2, \theta)$ distribution with density

$$
f(x)=\theta^{2} x e^{-\theta x}
$$

for $x>0$ and $\theta>0$.
a. (5) Find the maximum likelihood estimator for the parameter θ.

Solution: The log-likelihood function is

$$
\ell(\theta \mid \mathbf{x})=2 n \log \theta+\sum_{k=1}^{n} \log x_{k}-\theta \sum_{k=1}^{n} x_{k} .
$$

Equating the derivative to 0 we get

$$
\hat{\theta}=\frac{2 n}{\sum_{k=1}^{n} x_{k}} .
$$

b. (10) For the testing problem $H_{0}: \theta=1$ versus $H_{1}: \theta \neq 1$ find the Wilks's test statistic λ. Describe when you would reject H_{0} given that the size of the test is $1-\alpha$ with $\alpha \in(0,1)$.

Solution: By definition

$$
\lambda=2 \ell(\hat{\theta})-2 \ell(1)
$$

Using the maximum likelihood estimator $\hat{\beta}$ we get

$$
\lambda=-4 n \log \left(\frac{\bar{x}}{2}\right)+2 n(\bar{x}-2) .
$$

By Wilks's theorem under H_{0} the distribution of the test statistic λ is approximately $\chi^{2}(1)$. The null-hypothesis is rejected when $\lambda>c_{\alpha}$ where c_{α} is such that $P\left(\chi^{2}(1) \geq c_{\alpha}\right)=\alpha$.
c. (10) The function

$$
f(y)=-4 n \log \left(\frac{y}{2}\right)+2 n(y-2)
$$

is strictly decreasing on $(0,2)$ and strictly increasing on $(2, \infty)$. Assume for all $c>\min _{y>0} f(y)$ you can find the two solutions of the equation $f(y)=c$. Can you use this information to give an exact test given $\alpha \in(0,1)$? Describe the procedure. No calculations are required.
Hint: by properties of the gamma distribution $\bar{X} \sim \Gamma(2 n, \theta / n)$.
Solution: Given the assumptions we can find such a c_{α} that under H_{0} we have

$$
P_{H_{0}}\left(f(\bar{X}) \geq c_{\alpha}\right)=\alpha
$$

Let $x_{1}<x_{2}$ be the solutions of the equation $f(x)=c_{\alpha}$. The test that rejects H_{0} when either $\bar{X}<x_{1}$ or $\bar{X}>x_{2}$ is exact.
4. (25) Assume the regression model with

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where $E(\boldsymbol{\epsilon})=0$ and $\operatorname{var}(\boldsymbol{\epsilon})=\sigma^{2} \boldsymbol{\Sigma}$ where $\boldsymbol{\Sigma}$ is an invertible known matrix and σ^{2} is an unknown parameter.
a. (5) Show that

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

is an unbiased estimate of the parameter $\boldsymbol{\beta}$.
Solution: We compute

$$
E(\hat{\boldsymbol{\beta}})=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} E(\mathbf{Y})
$$

Since $E(\mathbf{Y})=\mathbf{X} \boldsymbol{\beta}$ we have

$$
E(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta}
$$

b. (5) Show that

$$
\tilde{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{Y}
$$

is an unbiased estimate of the parameter $\boldsymbol{\beta}$.
Solution: We compute

$$
E(\tilde{\boldsymbol{\beta}})=\left(\mathbf{X}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{\Sigma}^{-1} E(\mathbf{Y})
$$

Since $E(\mathbf{Y})=\mathbf{X} \boldsymbol{\beta}$ we have

$$
E(\tilde{\boldsymbol{\beta}})=\boldsymbol{\beta}
$$

c. (5) Compute the covariance matrix

$$
\operatorname{cov}(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}}, \tilde{\boldsymbol{\beta}})
$$

Solution: Denote

$$
\mathbf{A}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}
$$

and

$$
\mathbf{B}=\left(\mathbf{X}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{\Sigma}^{-1}
$$

In this notation

$$
\operatorname{cov}(\mathbf{A Y}-\mathbf{B Y}, \mathbf{B Y})=(\mathbf{A}-\mathbf{B}) \operatorname{cov}(\mathbf{Y}, \mathbf{Y}) \mathbf{B}^{T}
$$

Note that $\operatorname{cov}(\mathbf{Y}, \mathbf{Y})=\sigma^{2} \boldsymbol{\Sigma}$. It is straightforward to check that

$$
(\mathbf{A}-\mathbf{B}) \boldsymbol{\Sigma} \mathbf{B}^{T}=0
$$

d. (10) Which of the two estimators for $\boldsymbol{\beta}$ is better? Explain.

Solution: Write as in the Gauss-Markov theorem

$$
\begin{aligned}
\operatorname{var}(\hat{\boldsymbol{\beta}}) & =\operatorname{var}(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}}+\tilde{\boldsymbol{\beta}}) \\
& =\operatorname{var}(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}})+\operatorname{var}(\tilde{\boldsymbol{\beta}})+2 \operatorname{cov}(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}}, \tilde{\boldsymbol{\beta}}) \\
& =\operatorname{var}(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}})+\operatorname{var}(\tilde{\boldsymbol{\beta}}) .
\end{aligned}
$$

This means that $\tilde{\boldsymbol{\beta}}$ is the better estimator of $\boldsymbol{\beta}$.

