University of Luubljana
 Doctoral Programme in Statistics
 Methodology of Statistical Research
 Written examination

January $26^{\text {th }}, 2023$

NAME AND SURNAME: \qquad ID number: \square

Instructions

Read carefully the wording of the problem before you start. There are four problems altogether. You may use a A4 sheet of paper and a mathematical handbook. Please write all the answers on the sheets provided. You have two hours.

Problem	a.	b.	c.	d.	
1.					
2.					
3.			\bullet	\bullet	
4.					
Total					

1. (20) The population of interest has N units. For every unit there are two statistical variables: denote their values by $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{n}\right)$, where $y_{k} \in\{0,1\}$ for all $k=1,2, \ldots, N$. Assume that $x_{1}, x_{2}, \ldots, x_{N}$ are known in advance from a full census. The quantity of interest is

$$
\gamma=\frac{\sum_{k=1}^{N} x_{k} y_{k}}{\sum_{k=1}^{N} x_{k}} .
$$

To estimate γ, we take a simple random sample of size $n \leq N$. Denote

$$
I_{k}= \begin{cases}1 & \text { if unit } k \text { is chosen; } \\ 0 & \text { else }\end{cases}
$$

a. (5) Let

$$
\hat{\gamma}=\frac{N}{n} \frac{\sum_{k=1}^{N} x_{k} y_{k} I_{k}}{\sum_{k=1}^{N} x_{k}} .
$$

Show that $\hat{\gamma}$ is an unbiased estimator of γ.
Solution: we know that $E\left(I_{k}\right)=n / N$. Using this and the linearity of expectation gives that $\hat{\gamma}$ is unbiased.
b. (5) Compute the standard error of $\hat{\gamma}$.

Solution: if we denote

$$
z_{k}=\frac{x_{k} y_{k}}{\sum_{i=1}^{N} x_{k}}
$$

then the sampling procedure is just like simple random sampling from the population with the statistical variable with values $z_{1}, z_{2}, \ldots, z_{N}$. We know that

$$
\operatorname{var}\left(\frac{1}{n} \sum_{k=1}^{N} z_{k} I_{k}\right)=\frac{\sigma^{2}}{n} \cdot \frac{N-n}{N-1}
$$

where

$$
\sigma^{2}=\frac{1}{N} \sum_{k=1}^{N}\left(z_{k}-\bar{z}\right)^{2}
$$

It follows that

$$
\operatorname{var}(\hat{\gamma})=\frac{N^{2} \sigma^{2}}{n} \cdot \frac{N-n}{N-1}
$$

c. (10) Let

$$
p=\frac{1}{N} \sum_{k=1}^{N} y_{k}
$$

and

$$
\hat{p}=\frac{1}{n} \sum_{k=1}^{N} y_{k} I_{k} .
$$

Assume that $J_{1}, J_{2}, \ldots, J_{N}$ are indicators which, given I_{1}, \ldots, I_{N}, are conditionally independent with

$$
P\left(J_{k}=1 \mid I_{1}, \ldots, I_{N}\right)=\frac{1}{n} \sum_{l=1}^{N} y_{l} I_{l} .
$$

Assume as known that

$$
E\left(\left(1-I_{k}\right) J_{k}\right)=\left(\frac{N-n}{N-1}\right)\left(p-\frac{y_{k}}{N}\right) .
$$

Consider the alternative "bootstrap" estimator

$$
\tilde{\gamma}=\frac{\sum_{k=1}^{N} x_{k} y_{k} I_{k}+x_{k}\left(1-I_{k}\right) J_{k}}{\sum_{k=1}^{n} x_{k}}
$$

Is $\tilde{\gamma}$ is an unbiased estimator of γ ?
Solution: we compute

$$
\begin{aligned}
E & {\left[\sum_{k=1}^{N}\left(x_{k} y_{k} I_{k}+x_{k}\left(1-I_{k}\right) J_{k}\right)\right] } \\
& =\frac{n}{N} \sum_{k=1}^{N} x_{k} y_{k}+\sum_{k=1}^{N} x_{k}\left(\frac{(N-n) p}{N-1}-\frac{(N-n)}{N(N-1)} y_{k}\right) \\
& =\frac{n}{N} \sum_{k=1}^{N} x_{k} y_{k}+\frac{N-n}{N-1} \sum_{k=1}^{n}\left(p x_{k}-\frac{1}{N} \sum_{k=1}^{N} x_{k} y_{k}\right) \\
& =\frac{n-1}{N-1} \sum_{k=1}^{N} x_{k} y_{k}+\frac{(N-n) p}{N-1} \sum_{k=1}^{N} x_{k} .
\end{aligned}
$$

Finally, we have

$$
E(\tilde{\gamma})=\frac{(N-n) p}{N-1}+\frac{n-1}{N-1} \gamma .
$$

The estimator is in general not unbiased.
d. (5) Is it possible to adjust $\tilde{\gamma}$ to make it an unbiased estimator? Just give the idea. No calculations necessary.

Solution: we know that \hat{p} is an unbiased estimator of p. It follows that

$$
\frac{N-1}{n-1}\left(\tilde{\gamma}-\frac{(N-n) \hat{p}}{N-1}\right)
$$

is an unbiased estimator of γ.
2. (25) Assume the observed values $x_{1}, x_{2}, \ldots, x_{n}$ were generated as random variables $X_{1}, X_{2}, \ldots, X_{n}$ with density

$$
f(x)=\frac{1}{\sqrt{2 \pi x^{3}}} e^{-\frac{(1-\mu x)^{2}}{2 x}}
$$

for $x, \mu>0$.
a. (5) Find the maximum likelihood estimate of μ.

Solution: the log-likelihood function is

$$
\ell=\frac{n}{2} \log 2 \pi-\frac{3}{2} \sum_{k=1}^{n} \log x_{k}-\sum_{k=1}^{n} \frac{\left(1-\mu x_{k}\right)^{2}}{2 x_{k}}
$$

Taking derivatives gives

$$
\sum_{k=1}^{n}\left(1-\mu x_{k}\right)=0
$$

The estimate is

$$
\hat{\mu}=\frac{n}{x_{1}+x_{2}+\cdots+x_{n}}=\frac{1}{\bar{x}} .
$$

b. (5) Can you fix the maximum likelihood estimator to be unbiased? Assume as known:

- The density of $X=X_{1}+\cdots+X_{n}$ is

$$
f_{n}(x)=\frac{n}{\sqrt{2 \pi x^{3}}} e^{-\frac{(n-\mu x)^{2}}{2 x}}
$$

for $x>0$.

- Assume as known that for $a, b>0$ we have

$$
\int_{0}^{\infty} x^{-5 / 2} e^{-a x-\frac{b}{x}} \mathrm{~d} x=\frac{\sqrt{\pi}(1+2 \sqrt{a b})}{2 b^{3 / 2}} e^{-2 \sqrt{a b}}
$$

Solution: compute

$$
\begin{aligned}
E\left(\frac{n}{X}\right) & =n \int_{0}^{\infty} \frac{1}{x} f_{n}(x) \mathrm{d} x \\
& =n^{2} \frac{e^{n \mu}}{\sqrt{2 \pi}} \int_{0}^{\infty} x^{-5 / 2} e^{-\frac{\mu^{2}}{2} x-\frac{n^{2}}{2 x}} \mathrm{~d} x \\
& =n^{2} \frac{e^{n \mu}}{\sqrt{2 \pi}} \sqrt{2 \pi} \frac{1+n \mu}{n^{3}} e^{-n \mu} \\
& =\mu+\frac{1}{n} .
\end{aligned}
$$

An unbiased estimator is

$$
\tilde{\mu}=\frac{1}{\bar{X}}-\frac{1}{n} .
$$

c. (10) Compute the variance of the maximum likelihood estimator of μ. Assume as known that for $a, b>0$ we have

$$
\int_{0}^{\infty} x^{-7 / 2} e^{-a x-\frac{b}{x}} \mathrm{~d} x=\frac{\sqrt{\pi}(3+6 \sqrt{a b}+4 a b)}{4 b^{5 / 2}} e^{-2 \sqrt{a b}}
$$

Solution: we compute

$$
\begin{aligned}
E\left(\frac{n^{2}}{X^{2}}\right) & =\int_{0}^{\infty} \frac{n^{2}}{x^{2}} f_{n}(x) \mathrm{d} x \\
& =n^{3} \frac{e^{n \mu}}{\sqrt{2 \pi}} \int_{0}^{\infty} x^{-7 / 2} e^{-\frac{\mu^{2}}{2} x-\frac{n^{2}}{2 x}} \mathrm{~d} x \\
& =n^{3} \frac{e^{n \mu}}{\sqrt{2 \pi}} \frac{\sqrt{2 \pi}\left(3+3 n \mu+n^{2} \mu^{2}\right)}{n^{5}} e^{-n \mu} \\
& =\frac{3}{n^{2}}+\frac{3 \mu}{n}+\mu^{2} .
\end{aligned}
$$

The variance is

$$
\operatorname{var}(\hat{\mu})=E\left(\hat{\mu}^{2}\right)-(E(\hat{\mu}))^{2}=\frac{\mu}{n}+\frac{2}{n^{2}} .
$$

d. (5) What approximation the the standard error of the maximum likelihood estimator do we get if we use the Fisher information? Assume as known that

$$
\int_{0}^{\infty} x^{-1 / 2} e^{-a x-\frac{b}{x}} \mathrm{~d} x=\frac{\sqrt{\pi}}{\sqrt{a}} e^{-2 \sqrt{a b}}
$$

Solution: taking the derivative of the log-likelihood function for $n=1$ we get

$$
\ell^{\prime \prime}=-x .
$$

It follows that

$$
\begin{aligned}
I(\mu) & =E(X) \\
& =\frac{e^{\mu}}{\sqrt{2 \pi}} \int_{0}^{\infty} \frac{1}{\sqrt{x}} e^{-\frac{\mu^{2} x}{2}-\frac{1}{2 x}} \mathrm{~d} x \\
& =\frac{e^{\mu}}{\sqrt{2 \pi}} \cdot \sqrt{2 \pi \mu} e^{\mu} \\
& =\frac{1}{\mu} .
\end{aligned}
$$

The approximate variance using Fisher's information is

$$
\frac{\mu}{n} .
$$

3. (25) Gauss's gamma distribution is given by the density

$$
f(x, y)=\sqrt{\frac{2 \nu}{\pi}} y e^{-y} e^{-\frac{\nu y(x-\mu)^{2}}{2}} .
$$

for $-\infty<x<\infty$ and $y>0$ and $(\mu, \nu) \in \mathbb{R} \times(0, \infty)$. Assume that the observations are pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ generated as independent random pairs $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ with density $f(x, y)$. We would like to test

$$
H_{0}: \mu=0 \quad \text { versus } \quad H_{1}: \mu \neq 0 .
$$

a. (15) Compute the maximum likelihood estimates of the parameters. Compute the maximum likelihood estimate of ν when $\mu=0$.

Solution: the log-likelihood function is

$$
\ell=\frac{n}{2} \log \left(\frac{2 \nu}{\pi}\right)+\sum_{k=1}^{n}\left(\log y_{k}-y_{k}\right)-\frac{\nu}{2} \sum_{k=1}^{n} y_{k}\left(x_{k}-\mu\right)^{2} .
$$

Set the partial derivatives to 0 to get

$$
\frac{n}{2 \nu}-\frac{1}{2} \sum_{k=1}^{n} y_{k}\left(x_{k}-\mu\right)^{2}=0
$$

in

$$
\nu \sum_{k=1}^{n} y_{k}\left(x_{k}-\mu\right)=0 .
$$

The second equation gives

$$
\hat{\mu}=\frac{\sum_{k=1}^{n} x_{k} y_{k}}{\sum_{k=1}^{n} y_{k}} .
$$

Insert $\hat{\mu}$ into the second equation to get

$$
\hat{\nu}=\frac{n}{\sum_{k=1}^{n} y_{k}\left(x_{k}-\hat{\mu}\right)^{2}} .
$$

When $\mu=0$, the first equation determines $\tilde{\nu}$ as

$$
\tilde{\nu}=\frac{n}{\sum_{k=1}^{n} x_{k}^{2} y_{k}} .
$$

b. (10) Find the likelihood ratio statistics for the above testing problem. What is its approximate distribution under H_{0} ?

Solution: the test statistic equals

$$
\begin{aligned}
\nu & =2[\ell(\hat{\nu}, \hat{\mu} \mid \mathbf{x}, \mathbf{y})-\ell(\tilde{\nu}, 0 \mid \mathbf{x}, \mathbf{y})] \\
& =n(\log \hat{\nu}-\log \tilde{\nu})-\hat{\nu} \sum_{k=1}^{n} y_{k}\left(x_{k}-\hat{\mu}\right)^{2}+\tilde{\nu} \sum_{k=1}^{n} x_{k}^{2} y_{k} .
\end{aligned}
$$

The equations yield

$$
\hat{\nu} \sum_{k=1}^{n} y_{k}\left(x_{k}-\hat{\mu}\right)^{2}=\tilde{\nu} \sum_{k=1}^{n} x_{k}^{2} y_{k}=n,
$$

which in turn implies

$$
\lambda=n \log \frac{\hat{\nu}}{\tilde{\nu}} .
$$

by Wilks's theorem the approximate distribution of the test statistics under H_{0} is $\chi^{2}(1)$.
4. (25) Assume the regression equations are

$$
\begin{aligned}
& Y_{k 1}=\alpha+\beta x_{k 1}+\epsilon_{k 1} \\
& Y_{k 2}=\alpha+\beta x_{k 2}+\epsilon_{k 2}
\end{aligned}
$$

for $k=1,2, \ldots, n$. The error terms satisfy the assumptions that

$$
\begin{aligned}
E\left(\epsilon_{k 1}\right)=E\left(\epsilon_{k 2}\right) & =0 \\
\operatorname{var}\left(\epsilon_{k 1}\right)=\operatorname{var}\left(\epsilon_{k 2}\right) & =2 \sigma^{2}
\end{aligned}
$$

for $k=1,2, \ldots, n$, and

$$
\operatorname{cov}\left(\epsilon_{k 1}, \epsilon_{k 2}\right)=\sigma^{2}
$$

for $k \neq l$. Assume that $\sum_{k=1}^{n}\left(x_{k 1}+x_{k 2}\right)=0$. The vectors $\left(\epsilon_{k 1}, \epsilon_{k 2}\right), \ldots,\left(\epsilon_{n 1}, \epsilon_{n 2}\right)$ are independent.
a. (5) Show that

$$
\operatorname{cov}\left((3+\sqrt{3}) Y_{k 1}+(-3+\sqrt{3}) Y_{k 2},(-3+\sqrt{3}) Y_{k 1}+(3+\sqrt{3}) Y_{k 2}\right)=0
$$

for $k=1,2, \ldots, n$.
Solution: compute

$$
\begin{aligned}
& \operatorname{cov}\left((3+\sqrt{3}) Y_{k 1}+(-3+\sqrt{3}) Y_{k 2},(-3+\sqrt{3}) Y_{k 1}+(3+\sqrt{3}) Y_{k 2}\right) \\
& \quad=\sigma^{2}\left(-12-12+(3+\sqrt{3})^{2}+(-3+\sqrt{3})^{2}\right) \\
& \quad=0
\end{aligned}
$$

b. (5) Compute

$$
\operatorname{var}\left((3+\sqrt{3}) Y_{k 1}+(-3+\sqrt{3}) Y_{k 2}\right)
$$

and

$$
\operatorname{var}\left((-3+\sqrt{3}) Y_{k 1}+(3+\sqrt{3}) Y_{k 2}\right)
$$

Solution: both variances are the same by symmetry. For the first, we compute

$$
\begin{aligned}
\operatorname{var} & \left((-3+\sqrt{3}) Y_{k 1}+(3+\sqrt{3}) Y_{k 2}\right) \\
= & (-3+\sqrt{3})^{2} \operatorname{var}\left(Y_{k 1}\right)+(3+\sqrt{3})^{2} \operatorname{var}\left(Y_{k 1}\right) \\
& \quad+2(-3+\sqrt{3})(3+\sqrt{3}) \operatorname{cov}\left(Y_{k 1}, Y_{k 2}\right) \\
= & \sigma^{2}(48-12) \\
= & 36 \sigma^{2} .
\end{aligned}
$$

c. (10) Compute the best unbiased linear estimator $\hat{\alpha}$ of α as explicitly as possible.

Solution: we replace the pair $\left(y_{k 1}, y_{k 2}\right)$ by the pair

$$
\left(\tilde{y}_{k 1}, \tilde{y}_{k 2}\right)=\left((3+\sqrt{3}) y_{k 1}+(-3+\sqrt{3}) y_{k 2},(-3+\sqrt{3}) y_{k 1}+(3+\sqrt{3}) y_{k 2}\right)
$$

and the pair $\left(x_{k 1}, x_{k 2}\right)$ by

$$
\left(\tilde{x}_{k 1}, \tilde{x}_{k 2}\right)=\left((3+\sqrt{3}) x_{k 1}+(-3+\sqrt{3}) x_{k 2},(-3+\sqrt{3}) x_{k 1}+(3+\sqrt{3}) x_{k 2}\right) .
$$

The regression model is transformed into

$$
\tilde{\mathbf{Y}}=\tilde{\mathbf{X}} \boldsymbol{\beta}+\tilde{\boldsymbol{\epsilon}}
$$

where

$$
\tilde{\mathbf{X}}=\left(\begin{array}{cc}
2 \sqrt{3} & \tilde{x}_{11} \\
2 \sqrt{3} & \tilde{x}_{12} \\
\vdots & \vdots \\
2 \sqrt{3} & \tilde{x}_{n 1} \\
2 \sqrt{3} & \tilde{x}_{n 2}
\end{array}\right)
$$

The transformed model satisfies the assumptions of the Gauss-Markov theorem so the best unbiased estimator is

$$
\binom{\hat{\alpha}}{\hat{\beta}}=\left(\tilde{\mathbf{X}}^{T} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{T} \tilde{\mathbf{Y}} .
$$

The assumptions imply that

$$
\tilde{\mathbf{X}}^{T} \tilde{\mathbf{X}}=\left(\begin{array}{cc}
4 \sqrt{3} n & 0 \\
0 & \sum_{k=1}^{n}\left(\tilde{x}_{k 1}^{2}+\tilde{x}_{k 2}^{2}\right)
\end{array}\right)
$$

Further we get

$$
\tilde{\mathbf{X}}^{T} \tilde{\mathbf{Y}}=\binom{2 \sqrt{3} \sum_{k=1}^{n}\left(\tilde{y}_{k 1}+\tilde{y}_{k 2}\right)}{\sum_{k=1}^{n}\left(\tilde{x}_{k 1} \tilde{y}_{k 1}^{2}+\tilde{x}_{k 2} \tilde{y}_{k 2}^{2}\right)} .
$$

It follows that

$$
\hat{\alpha}=\frac{1}{2 n} \sum_{k=1}^{n}\left(\tilde{y}_{k 1}+\tilde{y}_{k 2}\right)=2 \sqrt{3} \bar{y} .
$$

d. (5) Compute the standard error of $\hat{\alpha}$.

Solution: we have

$$
\begin{aligned}
\operatorname{var}(\hat{\alpha}) & =\frac{n}{4 n^{2}}\left(36 \sigma^{2}+36 \sigma^{2}\right) \\
& =\frac{18 \sigma^{2}}{n}
\end{aligned}
$$

