University of Luubluana
 Doctoral Programme in Statistics
 Methodology of Statistical Research
 Written examination
 February $13^{\text {th }}, 2020$

NAME AND SURNAME: \qquad ID NUMBER: \square

Instructions

Read carefully the wording of the problem before you start. There are four problems altogeher. You may use a A4 sheet of paper and a mathematical handbook. Please write all the answers on the sheets provided. You have two hours.

Problem	a.	b.	c.	d.	
1.			\bullet	\bullet	
2.			\bullet	\bullet	
3.			\bullet	\bullet	
4.			\bullet	\bullet	
Total					

1. (25) For sampling purposes a population of size N is divided into K strata of sizes $N_{1}, N_{2}, \ldots, N_{K}$. Let μ and σ^{2} be the population mean and the population variance. For $i=1,2, \ldots, K$ let μ_{i} and σ_{i}^{2} be the population means and the population variances for individual strata. Assume that a stratified sample is selected such that the sample sizes for individual strata are n_{i} for $i=1,2, \ldots, K$. Denote $w_{i}=N_{i} / N$ for $i=1,2, \ldots, K$.
a. (10) Let \bar{Y}_{i} be the sample mean for the i-th stratum. Let \bar{Y} be the unbiased estimator of the population mean

$$
\bar{Y}=\sum_{i=1}^{K} w_{i} \bar{Y}_{i}
$$

Show that

$$
E\left[\left(\bar{Y}_{i}-\bar{Y}\right)^{2}\right]=\operatorname{var}\left(\bar{Y}_{i}\right)+\mu_{i}^{2}+\operatorname{var}(\bar{Y})+\mu^{2}-2 \sum_{j=1}^{K}\left(w_{j} \mu_{i} \mu_{j}\right)-2 w_{i} \operatorname{var}\left(\bar{Y}_{i}\right)
$$

Solution: Compute

$$
\begin{aligned}
E\left[\left(\bar{Y}_{i}-\bar{Y}\right)^{2}\right] & =E\left(\bar{Y}_{i}^{2}-2 \bar{Y}_{i} \bar{Y}+\bar{Y}^{2}\right) \\
& =\operatorname{var}\left(\bar{Y}_{i}\right)+\mu_{i}^{2}+\operatorname{var}(\bar{Y})+\mu^{2}-2 E\left(\bar{Y}_{i} \bar{Y}\right)
\end{aligned}
$$

By independence of $\bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{K}$ we get

$$
\begin{aligned}
E\left(\bar{Y}_{i} \bar{Y}\right) & =\sum_{j=1}^{K} w_{j} E\left(\bar{Y}_{i} \bar{Y}_{j}\right) \\
& =\sum_{j=1, j \neq i}^{K} w_{j} \mu_{i} \mu_{j}+w_{i} E\left(\bar{Y}_{i}^{2}\right) \\
& =\sum_{j=1, j \neq i}^{K} w_{j} \mu_{i} \mu_{j}+w_{i}\left(\operatorname{var}\left(\bar{Y}_{i}\right)+\mu_{i}^{2}\right) \\
& =\sum_{j=1}^{K}\left(w_{j} \mu_{i} \mu_{j}\right)+w_{i} \operatorname{var}\left(\bar{Y}_{i}\right) .
\end{aligned}
$$

b. (15) Let

$$
\gamma=\sum_{i=1}^{K} w_{i}\left(\mu_{i}-\mu\right)^{2}=\sum_{i=1}^{K} w_{i} \mu_{i}^{2}-\mu^{2} .
$$

Let

$$
\hat{\gamma}=\sum_{i=1}^{K} w_{i}\left(\bar{Y}_{i}-\bar{Y}\right)^{2} .
$$

be an estimator of γ. Modify this estimator to make it an unbiased estimator of γ.

Solution: We compute

$$
\begin{aligned}
E(\hat{\gamma})= & \sum_{i=1}^{K} w_{i} E\left(\bar{Y}_{i}-\bar{Y}\right)^{2} \\
= & \sum_{i=1}^{K} w_{i}\left(\operatorname{var}\left(\bar{Y}_{i}\right)+\mu_{i}^{2}+\operatorname{var}(\bar{Y})+\mu^{2}-2\left(\sum_{j=1}^{K}\left(w_{j} \mu_{i} \mu_{j}\right)+w_{i} \operatorname{var}\left(\bar{Y}_{i}\right)\right)\right) \\
= & \sum_{i=1}^{K} w_{i} \operatorname{var}\left(\bar{Y}_{i}\right)+\sum_{i=1}^{K} w_{i} \mu_{i}^{2}+\operatorname{var}(\bar{Y})+\mu^{2}- \\
& \quad-2 \operatorname{var}(\bar{Y})-2 \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} \mu_{i} \mu_{j} \\
= & \sum_{i=1}^{K} w_{i} \operatorname{var}\left(\bar{Y}_{i}\right)+\sum_{i=1}^{K} w_{i} \mu_{i}^{2}+\operatorname{var}(\bar{Y})+\mu^{2}-2 \operatorname{var}(\bar{Y})-2 \mu^{2} \\
= & \gamma+\sum_{i=1}^{K} w_{i} \operatorname{var}\left(\bar{Y}_{i}\right)-\operatorname{var}(\bar{Y}) .
\end{aligned}
$$

Both additional terms in the expectation can be estimated in an unbiased way. Subtracting these unbiased estimates from $\hat{\gamma}$ gives an unbiased estimate of γ.
2. (25) The Pareto distribution has the density

$$
f(x, \alpha, \lambda)=\frac{\alpha \lambda^{\alpha}}{(\lambda+x)^{\alpha+1}}
$$

for $x>0$ where $\alpha, \lambda>0$. Assume the data $x_{1}, x_{2}, \ldots, x_{n}$ are an i.i.d. sample from the Pareto distribution.
a. (10) Write down the equations for the maximum likelihood estimates of the parameters α and λ.

Solution: The log-likelihood function is

$$
l(\mathbf{x}, \alpha, \lambda)=n \log (\alpha)+n \alpha \log (\lambda)-(\alpha+1) \sum_{i=1}^{n} \log \left(\lambda+x_{i}\right) .
$$

Equate partial derivatives to 0 to get the equations

$$
\begin{array}{ll}
\frac{\partial l(\mathbf{x}, \alpha, \lambda)}{\partial \alpha}=\frac{n}{\alpha}+n \log (\lambda)-\sum_{i=1}^{n} \log \left(\lambda+x_{i}\right) & =0 \\
\frac{\partial l(\mathbf{x}, \alpha, \lambda)}{\partial \lambda}=\frac{n \alpha}{\lambda}-(\alpha+1) \sum_{i=1}^{n} \frac{1}{\lambda+x_{i}} & =0 .
\end{array}
$$

b. (15) Compute the approximate standard error of the maximum likelihood estimator $\hat{\alpha}$.

Solution: The second partial derivatives of the density are

$$
\begin{aligned}
\frac{\partial^{2} l(x, \alpha, \alpha)}{\partial \alpha^{2}} & =-\frac{1}{\alpha^{2}} \\
\frac{\partial^{2} l(x, \alpha, \lambda)}{\partial \lambda^{2}} & =-\frac{\alpha}{\lambda^{2}}+\frac{\alpha+1}{(\lambda+x)^{2}} \\
\frac{\partial^{2} l(x, \alpha, \lambda)}{\partial \alpha \partial \lambda} & =\frac{x}{\lambda(\lambda+x)} .
\end{aligned}
$$

Integrating we get

$$
I(\alpha, \lambda)=\left(\begin{array}{cc}
\frac{1}{\alpha^{2}} & -\frac{1}{\lambda(\alpha+1)} \\
-\frac{1}{\lambda(\alpha+1)} & \frac{\alpha}{\lambda^{2}(\alpha+2)}
\end{array}\right)
$$

The approximate standard error is

$$
s e(\hat{\alpha})=\frac{1}{\sqrt{n}} \sqrt{I_{11}^{-1}},
$$

where I_{11}^{-1} is the element in the upper left corner of the inverse $I^{-1}(\alpha, \lambda)$.
3. (25) Assume the data $x_{1}, x_{2}, \ldots, x_{n}$ are an i.i.d.sample from the normal distribution. Assume the parameter σ^{2} is known. We test $H_{0}: \mu=0$ versus $H_{1}: \mu \neq 0$.
a. (10) The null-hypothesis H_{0} with a given confidence level α can be tested in two ways:

- H_{0} is rejected if $|\bar{X}|>c$ for the value c such that the probability of Type I error if H_{0} holds is α.
- Estimate μ and set up a $(1-\alpha)$-confidence interval as $\bar{x} \pm z_{(1-\alpha) / 2} \cdot \frac{\sigma}{\sqrt{n}}$ where

$$
P\left(-z_{(1-\alpha) / 2} \leq Z \leq z_{(1-\alpha) / 2}\right)=1-\alpha
$$

fro $Z \sim \mathrm{~N}(0,1)$. If the interval does not contain 0 reject H_{0}.
Are the two tests equal? Explain.
Solution: Yes, the two tests are the same since σ^{2} is known.
b. (15) Compute the likelihood ratio tests statistics for the testing situation described above. What is the distribution of λ ? Is the likelihood ratio test exact? Explain.

Solution: The computation of Λ gives

$$
\begin{gathered}
\Lambda=\exp \left(\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}-x_{i}^{2}}{2 \sigma^{2}}\right) \\
\Lambda=\exp \left(-\frac{n \bar{x}^{2}}{2 \sigma^{2}}\right)
\end{gathered}
$$

Since σ^{2} is known H_{0} is rejected if $|\bar{x}|>c$ for a suitable c. The distribution of the test statistic under H_{0} is exactly $\chi^{2}(1)$. The test is exact.
4. (25) The model for the data is described by two sets of regression equations

$$
Y_{i}=\alpha_{1}+\beta x_{i}+\epsilon_{i}
$$

for $i=1,2, \ldots, m$ and

$$
Z_{j}=\alpha_{2}+\beta w_{j}+\eta_{j}
$$

for $j=1,2, \ldots, n$. For both sets of equations the standard linear regression assumptions hold. This means for all i, j we have $E\left(\epsilon_{i}\right)=E\left(\eta_{j}\right)=0$, $\operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2}$ and $\operatorname{var}\left(\eta_{i}\right)=\tau^{2}$, and all ϵ_{i} and η_{j} are uncorrelated. Further assume that

$$
\sum_{i=1}^{m} x_{i}=0 \quad \text { in } \quad \sum_{j=1}^{n} w_{j}=0
$$

ter

$$
\sum_{i=1}^{m} x_{i}^{2}=1 \quad \text { in } \quad \sum_{j=1}^{n} w_{j}^{2}=1
$$

a. (10) Give an unbiased estimate of β based on all the data. What is the standard error of your estimate?

Solution: The two sets of equations are combined into one.

$$
\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{m} \\
Z_{1} \\
Z_{2} \\
\vdots \\
Z_{n}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & x_{1} \\
1 & 0 & x_{2} \\
\vdots & \vdots & \vdots \\
1 & 0 & x_{m} \\
0 & 1 & w_{1} \\
0 & 1 & w_{2} \\
\vdots & \vdots & \vdots \\
0 & 1 & w_{n}
\end{array}\right) \quad\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\beta
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{m} \\
\eta_{1} \\
\eta_{2} \\
\vdots \\
\eta_{n}
\end{array}\right) .
$$

Under the assumptions the OLS estimator of β is unbiased. We compute

$$
\mathbf{X}^{T} \mathbf{X}=\left(\begin{array}{ccc}
m & 0 & 0 \\
0 & n & 0 \\
0 & 0 & 2
\end{array}\right)
$$

The inverse is

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\left(\begin{array}{ccc}
1 / m & 0 & 0 \\
0 & 1 / n & 0 \\
0 & 0 & 1 / 2
\end{array}\right)
$$

We have

$$
\mathbf{X}^{T} \mathbf{Y}=\left(\begin{array}{c}
\sum_{i=1}^{m} Y_{i} \\
\sum_{j=1}^{n} Z_{j} \\
\sum_{i=1}^{m} x_{i} Y_{i}+\sum_{j=1}^{n} w_{j} Z_{j}
\end{array}\right)
$$

It follows that

$$
\hat{\beta}=\frac{1}{2}\left(\sum_{i=1}^{m} x_{i} Y_{i}+\sum_{j=1}^{n} w_{j} Z_{j}\right) .
$$

The standard error is

$$
\operatorname{se}(\hat{\beta})=\frac{\sqrt{\sigma^{2}+\tau^{2}}}{2}
$$

b. (15) Assume that $\sigma^{2} / \tau^{2}=\lambda$ for known $\lambda>0$. Compute the best unbiased linear estimate of β. What is its standard error?

Solution: If we multiply the second set of equations by $\sqrt{\lambda}$ and denote

$$
\tilde{Z}_{j}=\sqrt{\lambda} Z_{j}, \quad \tilde{\alpha}_{2}=\sqrt{\lambda} \alpha_{2}, \quad \tilde{w}_{j}=\sqrt{\lambda} w_{j} \quad \text { and } \quad \tilde{\eta}_{j}=\sqrt{\lambda} \eta_{j}
$$

for $j=1,2, \ldots, n$ and combine the two sets of equations into one we get the standard regression model. In this case the OLS estimator is the best unbiased linear estimator of β. However, the matrix \mathbf{X} changes and we get

$$
\mathbf{X}^{T} \mathbf{X}=\left(\begin{array}{ccc}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & 1+\lambda
\end{array}\right)
$$

and

$$
\mathbf{X}^{T} \mathbf{Y}=\left(\begin{array}{c}
\sum_{i=1}^{m} Y_{i} \\
\sum_{j=1}^{n} \tilde{Z}_{j} \\
\sum_{i=1}^{m} x_{i} Y_{i}+\sum_{j=1}^{n} \tilde{w}_{j} \tilde{Z}_{j}
\end{array}\right)
$$

It follows

$$
\hat{\beta}=\frac{1}{1+\lambda}\left(\sum_{i=1}^{m} x_{i} Y_{i}+\sum_{j=1}^{n} \tilde{w}_{j} \tilde{Z}_{j}\right) .
$$

The standard error is compute directly as

$$
\operatorname{se}(\hat{\beta})=\frac{\sigma}{\sqrt{1+\lambda}} .
$$

