University of Luubljana
 Doctoral Programme in Statistics
 Methodology of Statistical Research
 Written examination

February $10^{\text {th }}, 2023$

Name and surname: \qquad ID number: \square

Instructions

Read carefully the wording of the problem before you start. There are four problems altogether. You may use a A4 sheet of paper and a mathematical handbook. Please write all the answers on the sheets provided. You have two hours.

Problem	a.	b.	c.	d.	
1.				\bullet	
2.				\bullet	
3.				\bullet	
4.				\bullet	
Total					

1. (25) Suppose a stratified sample is taken from a population of size N. The strata are of size $N_{1}, N_{2}, \ldots, N_{K}$, and the simple random samples are of size $n_{1}, n_{2}, \ldots, n_{K}$. Denote by μ the population mean and by σ^{2} the population variance for the entire population, and by μ_{k} and σ_{k}^{2} the population means and the population variances for the strata.
a. (5) Show that

$$
\sigma^{2}=\sum_{k=1}^{K} w_{k} \sigma_{k}^{2}+\sum_{k=1}^{K} w_{k}\left(\mu_{k}-\mu\right)^{2}
$$

where $w_{k}=\frac{N_{k}}{N}$ for $k=1,2, \ldots, K$.
Solution: by definition we have

$$
\sigma^{2}=\frac{1}{N}\left(\sum_{k=1}^{K} \sum_{i=1}^{N_{k}}\left(y_{k i}-\mu\right)^{2}\right)
$$

where $y_{k i}$ is the value for the i-th unit in the k-th stratum. Note that

$$
\begin{aligned}
& \sum_{i=1}^{N_{k}}\left(y_{k i}-\mu\right)^{2}= \\
& \quad=\sum_{i=1}^{N_{k}}\left(y_{k i}-\mu_{k}+\mu_{k}-\mu\right)^{2} \\
& \quad=\sum_{i=1}^{N_{k}}\left(y_{k i}-\mu_{k}\right)^{2}+\sum_{i=1}^{N_{k}}\left(\mu_{k}-\mu\right)^{2}+2\left(\mu_{k}-\mu\right) \sum_{i=1}^{N_{k}}\left(y_{k i}-\mu\right) \\
& \quad=\sum_{i=1}^{N_{k}}\left(y_{k i}-\mu_{k}\right)^{2}+\sum_{i=1}^{N_{k}}\left(\mu_{k}-\mu\right)^{2} \\
& \quad=N_{k} \sigma_{k}^{2}+N_{k}\left(\mu_{k}-\mu\right)^{2} .
\end{aligned}
$$

Using this in the above summation gives the result.
b. (10) Let \bar{Y}_{k} be the sample average in the k-th stratum for $k=1,2, \ldots, K$ and $\bar{Y}=\sum_{k=1}^{K} w_{k} \bar{Y}_{k}$ the unbiased estimator of the population mean. The estimators $\bar{Y}_{1}, \ldots, \bar{Y}_{n}$ are assumed to be independent. To estimate σ^{2}, we need to estimate the quantity

$$
\sigma_{b}^{2}=\sum_{k=1}^{K} w_{k}\left(\mu_{k}-\mu\right)^{2}=\sum_{k=1}^{K} w_{k} \mu_{k}^{2}-\mu^{2} .
$$

The estimator

$$
\hat{\sigma}_{b}^{2}=\sum_{k=1}^{K} w_{k} \bar{Y}_{k}^{2}-\bar{Y}^{2}
$$

is suggested. Show that

$$
E\left(\hat{\sigma}_{b}^{2}\right)=\sum_{k=1}^{K} w_{k}\left(1-w_{k}\right) \operatorname{var}\left(\bar{Y}_{k}\right)+\sum_{k=1}^{K} w_{k} \mu_{k}^{2}-\mu^{2} .
$$

Solution: we know that

$$
E\left(\bar{Y}_{k}^{2}\right)=\operatorname{var}\left(\bar{Y}_{k}^{2}\right)+\mu_{k}^{2}
$$

and

$$
E\left(\bar{Y}^{2}\right)=\operatorname{var}(\bar{Y})+\mu^{2} .
$$

We have

$$
E\left(\hat{\sigma}_{b}^{2}\right)=\sum_{k=1}^{K} w_{k}\left(\operatorname{var}\left(\bar{Y}_{k}^{2}\right)+\mu_{k}^{2}\right)-\operatorname{var}(\bar{Y})-\mu^{2} .
$$

Taking into account that

$$
\operatorname{var}(\bar{Y})=\sum_{k=1}^{K} w_{k}^{2} \operatorname{var}\left(\bar{Y}_{k}\right),
$$

the result follows.
c. (10) Is there an unbiased estimator of σ^{2} ? Explain your answer.

Solution: we know that

$$
\sigma^{2}=\sum_{k=1}^{K} w_{k} \sigma_{k}^{2}+\sum_{k=1}^{K} w_{k}\left(\mu_{k}-\mu\right)^{2}
$$

We have unbiased estimators for σ_{k}^{2}. The second term can be estimated by

$$
\sum_{k=1}^{K} w_{k} \bar{Y}_{k}^{2}-\bar{Y}^{2}-\sum_{k=1}^{K} w_{k}\left(1-w_{k}\right) \frac{\hat{\sigma}_{k}^{2}}{n_{k}} \cdot \frac{N_{k}-n_{k}}{N_{k}-1} .
$$

This last term is an unbiased estimator of the second term.
2. (25) Gauss's gamma distribution is given by the density

$$
f(x, y)=\sqrt{\frac{\nu}{2 \pi}} \sqrt{y} e^{-y} e^{-\frac{\nu y(x-\mu)^{2}}{2}}
$$

for $-\infty<x<\infty$ and $y>0$ and $(\mu, \nu) \in \mathbb{R} \times(0, \infty)$. Assume that the observations are pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ generated as independent random pairs $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ with density $f(x, y)$.
a. (10) Compute the maximum likelihood estimates of the parameters.

Solution: the log-likelihood function is

$$
\ell=\frac{n}{2} \log \left(\frac{2 \nu}{\pi}\right)+\sum_{k=1}^{n}\left(\frac{1}{2} \log y_{k}-y_{k}\right)-\frac{\nu}{2} \sum_{k=1}^{n} y_{k}\left(x_{k}-\mu\right)^{2} .
$$

Set the partial derivatives to 0 to get

$$
\frac{n}{2 \nu}-\frac{1}{2} \sum_{k=1}^{n} y_{k}\left(x_{k}-\mu\right)^{2}=0
$$

and

$$
\nu \sum_{k=1}^{n} y_{k}\left(x_{k}-\mu\right)=0 .
$$

The second equation gives

$$
\hat{\mu}=\frac{\sum_{k=1}^{n} x_{k} y_{k}}{\sum_{k=1}^{n} y_{k}} .
$$

Insert $\hat{\mu}$ into the second equation to get

$$
\hat{\nu}=\frac{n}{\sum_{k=1}^{n} y_{k}\left(x_{k}-\hat{\mu}\right)^{2}} .
$$

b. (10) Find the Fisher information matrix. Assume as known that $E(X Y)=\mu$. Compute $E(Y)$ yourself by computing the marginal density of Y.

Solution: we compute the second partial derivatives of the likelihood function for $n=1$:

$$
\begin{aligned}
\frac{\partial^{2} \ell}{\partial \mu^{2}} & =-\nu y_{1} \\
\frac{\partial^{2} \ell}{\partial \nu^{2}} & =-\frac{1}{2 \nu^{2}} \\
\frac{\partial^{2} \ell}{\partial \mu \partial \nu} & =y_{1}\left(x_{1}-\mu\right)
\end{aligned}
$$

Integrating the density with respect to x gives that $Y \sim \exp (1)$, and hence $E\left(Y_{1}\right)=1$. It follows that

$$
I(\mu, \nu)=\left(\begin{array}{cc}
\nu & 0 \\
0 & \frac{1}{2 \nu^{2}}
\end{array}\right)
$$

c. (5) Give the approximate standard error of the maximum likelihood estimates.

Solution: using the Fisher's information matrix gives

$$
\operatorname{se}(\hat{\mu}) \approx \frac{1}{\sqrt{n \nu}} \quad \text { and } \quad \operatorname{se}(\hat{\nu}) \approx \frac{\sqrt{2} \nu}{\sqrt{n}}
$$

3. (20) Assume that your observations are pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. Assume the pairs are an i.i.d. sample from the bivariate normal density

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} e^{-\frac{(x-\mu)^{2}-2 \rho(x-\mu)(y-\nu)+(y-\nu)^{2}}{2\left(1-\rho^{2}\right)}} .
$$

Assume that $\rho \in(-1,1)$ is known. We would like to test the hypothesis

$$
H_{0}: \mu=\nu \quad \text { versus } \quad H_{1}: \mu \neq \nu .
$$

a. (10) Find the maximum likelihood estimates for μ and ν.

Solution: derivation, after cancelling constants, gives the equations

$$
\begin{aligned}
\sum_{k=1}^{n}\left(x_{k}-\mu\right)-\rho \sum_{k=1}^{n}\left(y_{k}-\nu\right) & =0 \\
-\rho \sum_{k=1}^{n}\left(x_{k}-\mu\right)+\sum_{k=1}^{n}\left(y_{k}-\nu\right) & =0
\end{aligned}
$$

Dividing by n and rearranging yields

$$
\begin{aligned}
\mu-\rho \nu & =\bar{x}-\rho \bar{y} \\
-\rho \mu+\nu & =-\rho \bar{x}+\bar{y}
\end{aligned}
$$

The solutions are $\hat{\mu}=\bar{x}$ and $\hat{\nu}=\bar{y}$. If $\mu=\nu$, the log-likelihood function becomes

$$
\log \left(\frac{1}{2 \pi \sqrt{1-\rho^{2}}}\right)-\frac{1}{2\left(1-\rho^{2}\right)} \sum_{k=1}^{n}\left(\left(x_{k}-\mu\right)^{2}-2 \rho\left(x_{k}-\mu\right)\left(y_{k}-\mu\right)+\left(y_{k}-\mu\right)^{2}\right) .
$$

Taking derivatives we get

$$
\frac{1}{2\left(1-\rho^{2}\right)} \sum_{k=1}^{n}\left(-2\left(x_{k}-\mu\right)+2 \rho\left(y_{k}-\mu\right)+2 \rho\left(x_{k}-\mu\right)-2\left(y_{k}-\mu\right)\right) .
$$

Equating to zero yields

$$
2 n(1-\rho) \mu=(1-\rho) \sum_{k=1}^{n}\left(x_{k}+y_{k}\right)
$$

and

$$
\tilde{\mu}=\tilde{\nu}=\frac{1}{2 n} \sum_{k=1}^{n}\left(x_{k}+y_{k}\right) .
$$

b. (10) Find the likelihood ratio statistic for testing the above hypothesis. What is the approximate distribution of the test statistic under H_{0} ?

Solution: we have

$$
\lambda=2 \ell(\hat{\mu}, \hat{\nu})-2 \ell(\tilde{\mu}, \tilde{\nu}) .
$$

Denote

$$
\bar{z}=\frac{\bar{x}+\bar{y}}{2} .
$$

Using the above estimates yields

$$
\begin{aligned}
\lambda= & \frac{1}{\left(1-\rho^{2}\right)}\left(\left(x_{k}-\bar{x}\right)^{2}-2 \rho\left(x_{k}-\bar{x}\right)\left(y_{k}-\bar{y}\right)+\left(y_{k}-\bar{y}\right)^{2}\right) \\
& \quad-\frac{1}{\left(1-\rho^{2}\right)}\left(\left(x_{k}-\bar{z}\right)^{2}-2 \rho\left(x_{k}-\bar{z}\right)\left(y_{k}-\bar{z}\right)+\left(y_{k}-\bar{z}\right)^{2}\right) .
\end{aligned}
$$

After some manipulation we get

$$
\lambda=\frac{1}{1-\rho^{2}}\left(-n\left(\bar{x}^{2}-2 \rho \bar{x} \bar{y}+\bar{y}^{2}\right)+2 n(1-\rho) \bar{z}^{2}\right) .
$$

The approximate distribution of λ under H_{0} is $\chi^{2}(1)$.
c. (5) What is the distribution of $\bar{X}-\bar{Y}$ if H_{0} holds? Can you use the result to give an alternative test statistic to test the above hypothesis? What is the distribution of your test statistic under H_{0} ?

Solution: if H_{0} holds, we have $\sqrt{n}(\bar{X}-\bar{Y}) \sim \mathrm{N}(0,2(1-\rho))$. An alternative test statistic would be

$$
Z=\frac{\sqrt{n}(\bar{X}-\bar{Y})}{\sqrt{2(1-\rho)}}
$$

which is standard normal. We reject H_{0} if $|Z| \geq z_{\alpha}$ where z_{α} is such that $P\left(|Z| \geq z_{\alpha}\right)=\alpha$.
4. (25) Assume the regression equations are

$$
Y_{k}=\alpha+\beta x_{k}+\epsilon_{k}
$$

for $k=1,2, \ldots, n$. The error terms satisfy the assumptions that

$$
E\left(\epsilon_{k}\right)=0 \quad \text { and } \quad \operatorname{var}\left(\epsilon_{k}\right)=\sigma^{2}\left(1+\tau^{2}\right)
$$

for $k=1,2, \ldots, n$, and

$$
\operatorname{cov}\left(\epsilon_{k}, \epsilon_{l}\right)=\sigma^{2} \tau^{2}
$$

for $k \neq l$, where τ^{2} is assumed to be a known constant. Assume that $\sum_{k=1}^{n} x_{k}=0$.
a. (10) Denote $\bar{Y}=\frac{1}{n} \sum_{k=1}^{n} Y_{k}$. Compute

$$
\operatorname{cov}\left(Y_{k}-c \bar{Y}, Y_{l}-c \bar{Y}\right)
$$

for $k \neq l$. Here c is an arbitrary constant.
Solution: from the assumptions we have

$$
\operatorname{cov}\left(Y_{k}, \bar{Y}\right)=\frac{\sigma^{2}}{n}\left(1+n \tau^{2}\right)
$$

and

$$
\operatorname{cov}(\bar{Y}, \bar{Y})=\frac{\sigma^{2}}{n}\left(1+n \tau^{2}\right) .
$$

We have

$$
\begin{aligned}
\operatorname{cov} & \left(Y_{k}-c \bar{Y}, Y_{l}-c \bar{Y}\right) \\
\quad= & \operatorname{cov}\left(Y_{k}, Y_{l}\right)-2 c \cdot \operatorname{cov}\left(Y_{k}, \bar{Y}\right)+c^{2} \cdot \operatorname{cov}(\bar{Y}, \bar{Y}) \\
& =\sigma^{2}\left(\tau^{2}-\frac{2 c}{n}\left(1+n \tau^{2}\right)+\frac{c^{2}}{n}\left(1+n \tau^{2}\right)\right)
\end{aligned}
$$

b. (10) Find an explicit formula for the best linear unbiased estimator of β.

Hint: choose

$$
c=1-\sqrt{\frac{1}{1+n \tau^{2}}} .
$$

Solution: with the above choice of c we have that $c \in(0,1)$ and

$$
\operatorname{cov}\left(Y_{k}-c \bar{Y}, Y_{l}-c \bar{Y}\right)=0
$$

for $k \neq l$. Define

$$
\tilde{Y}_{k}=Y_{k}-c \bar{Y}
$$

$$
\tilde{\epsilon}_{k}=\epsilon_{k}-c \bar{\epsilon}
$$

and

$$
\tilde{\mathbf{X}}=\left(\begin{array}{cc}
1-c & x_{1} \\
1-c & x_{2} \\
\vdots & \vdots \\
1-c & x_{n}
\end{array}\right)
$$

We have

$$
\tilde{Y}_{k}=\alpha(1-c)+\beta x_{k}+\tilde{\epsilon}_{k}
$$

for $k=1,2, \ldots, n$. The new regression equations satisfy the usual assumptions of the Gauss-Markov theorem. The best linear estimators of the regression parameters are

$$
\binom{\hat{\alpha}}{\hat{\beta}}=\left(\begin{array}{cc}
n(1-c)^{2} & 0 \\
0 & \sum_{k=1}^{n} x_{k}^{2}
\end{array}\right)^{-1}\binom{(1-c) \sum_{k=1}^{n} \tilde{Y}_{k}}{\sum_{k=1}^{n} x_{k} \tilde{Y}_{k}} .
$$

We get

$$
\hat{\beta}=\frac{\sum_{k=1}^{n} x_{k} \tilde{Y}_{k}}{\sum_{k=1}^{n} x_{k}^{2}} \cdot=\frac{\sum_{k=1}^{n} x_{k} Y_{k}}{\sum_{k=1}^{n} x_{k}^{2}}
$$

The last equality follows from the assumption $\sum_{k=1}^{n} x_{k}=0$.
c. (5) Compute the variance of the best linear unbiased estimator $\hat{\beta}$.

Solution: we compute directly

$$
\begin{aligned}
\operatorname{var}(\hat{\beta}) & =\operatorname{var}\left(\frac{\sum_{k=1}^{n} x_{k} Y_{k}}{\sum_{k=1}^{n} x_{k}^{2}}\right) \\
& =\frac{\sigma^{2}}{\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{2}}\left(\sum_{k=1}^{n} x_{k}^{2}\left(1+\tau^{2}\right)+\sum_{\substack{k, l \\
k \neq l}} x_{k} x_{l} \tau^{2}\right) \\
& =\frac{\sigma^{2}}{\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{2}} \sum_{k=1}^{n} x_{k}^{2}\left(1+\tau^{2}\right) \\
& =\frac{\sigma^{2}\left(1+\tau^{2}\right)}{\sum_{k=1}^{n} x_{k}^{2}}
\end{aligned}
$$

