University of Luubljana
 Doctoral Programme in Statistics
 Methodology of Statistical Research
 Written examination

September $3^{\text {rd }}, 2020$

NAME AND SURNAME: \qquad ID number: \square

Instructions

Read carefully the wording of the problem before you start. There are four problems altogeher. You may use a A4 sheet of paper and a mathematical handbook. Please write all the answers on the sheets provided. You have two hours.

Problem	a.	b.	c.	d.	
1.				\bullet	
2.				\bullet	
3.			\bullet	\bullet	
4.					
Total					

1. (25) Assume that every unit in a population of size N has two values of statistical variables. Denote these pairs of values by $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)$. The average of all the values

$$
\lambda=\frac{1}{2 N} \sum_{k=1}^{N}\left(x_{k}+y_{k}\right)
$$

is to be estimated. If the k-th unit is selected, she responds with the value x_{k} with probability $\frac{1}{2}$, and with value y_{k} with probability $\frac{1}{2}$ independently of other units and independently of the sampling procedure. The pollsters do not know which of the two values is given.

Assume that a simple random sample of size n is selected from the population. The quantity λ is estimated by the sample average. The estimator is expressed as

$$
\hat{\lambda}=\frac{1}{n} \sum_{k=1}^{N} I_{k}\left(x_{k} J_{k}+y_{k}\left(1-J_{k}\right)\right)
$$

where I_{k} is the indicator that the k-th unit is selected, and J_{k} is the indicator that the k-th unit's response is x_{k}. The assumptions imply that the vectors $\left(I_{1}, \ldots, I_{N}\right)$ and $\left(J_{1}, \ldots, J_{N}\right)$ are independent, and that the indicators J_{1}, \ldots, J_{n} are independent.
a. (5) Show that the estimator $\hat{\lambda}$ is unbiased.

Solution: Use independence and linearity of the expected value to get

$$
E(\hat{\lambda})=\frac{1}{n} \sum_{k=1}^{N} E\left(I_{k}\right)\left(x_{k} E\left(J_{k}\right)+y_{k} E\left(1-J_{k}\right)\right)=\lambda .
$$

b. (10) Show that for $k=1,2, \ldots, N$

$$
\operatorname{var}\left(I_{k}\left(x_{k} J_{k}+y_{k}\left(1-J_{k}\right)\right)\right)=\frac{n}{N}\left(\frac{x_{k}^{2}+y_{k}^{2}}{2}\right)-\frac{n^{2}}{N^{2}}\left(\frac{x_{k}+y_{k}}{2}\right)^{2}
$$

Solution: From simple random sampling we know that $E\left(I_{k}\right)=\frac{n}{N}$. This implies that

$$
E\left[I_{k}\left(x_{k} J_{k}+y_{k}\left(1-J_{k}\right)\right)\right]=\frac{n}{N}\left(\frac{x_{k}+y_{k}}{2}\right) .
$$

Using the facts that $I_{k}^{2}=I_{k}, J_{k}^{2}=J_{k}$ and $J_{k}\left(1-J_{k}\right)=0$ we get

$$
\begin{aligned}
E\left[I_{k}^{2}\left(x_{k} J_{k}+y_{k}\left(1-J_{k}\right)\right)^{2}\right] & =E\left[I_{k}\left(x_{k}^{2} J_{k}+y_{k}^{2}\left(1-J_{k}\right)\right)\right] \\
& =\frac{n}{N}\left(\frac{x_{k}^{2}+y_{k}^{2}}{2}\right)
\end{aligned}
$$

The formula for the variance follows.
c. (10) Show that for $k \neq l$
$\operatorname{cov}\left(I_{k}\left(x_{k} J_{k}+y_{k}\left(1-J_{k}\right)\right), I_{l}\left(x_{l} J_{l}+y_{l}\left(1-J_{l}\right)\right)\right)=\frac{n(n-1)}{4 N(N-1)}\left(x_{k}+y_{k}\right)\left(x_{l}+y_{l}\right)$.

Solution: From simple random sampling we know that

$$
\operatorname{cov}\left(I_{k}, I_{l}\right)=-\frac{n(N-n)}{N^{2}(N-1)} .
$$

This implies that

$$
E\left(I_{k} I_{l}\right)=-\frac{n(N-n)}{N^{2}(N-1)}+\frac{n^{2}}{N^{2}}=\frac{n(n-1)}{N(N-1)} .
$$

Use the linearity of expected value and independence assumptions to compute

$$
\begin{aligned}
E & {\left[\left(I_{k}\left(x_{k} J_{k}+y_{k}\left(1-J_{k}\right)\right)\left(I_{l}\left(x_{l} J_{l}+y_{l}\left(1-J_{l}\right)\right)\right]\right.\right.} \\
& =\frac{x_{k} x_{l}}{4} E\left(I_{k} I_{l}\right)+\frac{x_{k} y_{l}}{4} E\left(I_{k} I_{l}\right)+\frac{x_{l} y_{k}}{4} E\left(I_{k} I_{l}\right)+\frac{y_{k} y_{l}}{4} E\left(I_{k} I_{l}\right) \\
& =\frac{n(n-1)}{4 N(N-1)}\left(x_{k}+y_{k}\right)\left(x_{l}+y_{l}\right) .
\end{aligned}
$$

2. (25) Let the observed values $x_{1}, x_{2}, \ldots, x_{n}$ be generated as independent, identically distributed random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution

$$
P\left(X_{1}=x\right)=\frac{(\theta-1)^{x-1}}{\theta^{x}}
$$

for $x=1,2,3, \ldots$ and $\theta>1$.
a. (10) Find the MLE estimate of θ based on the observations.

Solution: We find

$$
\ell(\theta, \mathbf{x})=\left(\sum_{k=1}^{n} x_{k}-n\right) \log (\theta-1)-\left(\sum_{k=1}^{n} x_{k}\right) \log \theta .
$$

Taking the derivative we have

$$
\ell^{\prime}(\theta, \mathbf{x})=\frac{\sum_{k=1}^{n} x_{k}-n}{\theta-1}-\frac{\sum_{k=1}^{n} x_{k}}{\theta}=0
$$

It follows that

$$
\hat{\theta}=\frac{1}{n} \sum_{k=1}^{n} x_{k}=\bar{x} .
$$

b. (15) Write an approximate 99%-confidence interval for θ based on the observations. Assume as known that

$$
\sum_{x=1}^{\infty} x a^{x-1}=\frac{1}{(1-a)^{2}}
$$

for $|a|<1$.
Solution: We have

$$
\ell^{\prime \prime}(\theta, x)=-\frac{x-1}{(\theta-1)^{2}}+\frac{x}{\theta^{2}} .
$$

To find the Fisher information we need

$$
E\left(X_{1}\right)=\sum_{x=1}^{\infty} x \frac{(\theta-1)^{x-1}}{\theta^{x}} .
$$

Using the hint we get

$$
E\left(X_{1}\right)=\frac{1}{\theta} \cdot\left(1-\frac{\theta-1}{\theta}\right)^{-2}=\theta .
$$

We have

$$
I(\theta)=\frac{1}{\theta(\theta-1)} .
$$

An approximate 99\%-confidence interval is

$$
\hat{\theta} \pm 2.56 \cdot \sqrt{\frac{\hat{\theta}(\hat{\theta}-1)}{n}}
$$

3. (25) Assume that the observed values $x_{1}, x_{2}, \ldots, x_{m}$ and $y_{1}, y_{2}, \ldots, y_{n}$ were created as independent random variables $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ with $X_{k} \sim \exp (\mu)$ for $k=1,2, \ldots, m$ and $Y_{k} \sim \exp (\nu)$ for $k=1,2, \ldots, n$. The hypothesis

$$
H_{0}: \mu=\nu \quad \text { versus } \quad H_{1}: \mu \neq \nu
$$

is to be tested. Assume that $\mu, \nu>0$.
a. (15) Find the Wilks likelihood ratio statistics λ for this testing problem.

Solution: The log-likelihood functions is

$$
\ell(\mu, \nu \mid \mathbf{x}, \mathbf{y})=m \log \mu-\mu \sum_{k=1}^{m} x_{k}+n \log \nu-\nu \sum_{k=1}^{n} y_{k} .
$$

If μ and ν can vary freely, the maximum is attained at

$$
\hat{\mu}=\frac{m}{\sum_{k=1}^{m} x_{k}}=\frac{1}{\bar{x}} \quad \text { and } \quad \hat{\nu}=\frac{n}{\sum_{k=1}^{n} y_{k}}=\frac{1}{\bar{y}} .
$$

Evaluating the log-likelihood function at the MLE estimates gives

$$
\ell(\hat{\nu}, \hat{\mu} \mid \mathbf{x}, \mathbf{y})=m \log \hat{\mu}-m+n \log \hat{\nu}-n
$$

If $\nu=\mu$ the MLE turns out to be

$$
\tilde{\mu}=\tilde{\nu}=\frac{m+n}{\sum_{k=1}^{n} x_{k}+\sum_{k=1}^{n} y_{k}}
$$

and

$$
\ell(\tilde{\mu}, \tilde{\nu} \mid \mathbf{x}, \mathbf{y})=(m+n) \log \tilde{\mu}-m-n
$$

It follows that

$$
\lambda=2 m \log \hat{\mu}+2 n \log \hat{\nu}-2(m+n) \log \tilde{\mu} .
$$

b. (5) What is the approximate distribution of the Wilk's likelihood statistics?

Solution: Bt Wilks' theorem the approximate distribution is $\chi^{2}(1)$.
4. (25) Assume the following regression model

$$
\begin{aligned}
& Y_{i 1}=\beta x_{i 1}+\epsilon_{i} \\
& Y_{i 2}=\beta x_{i 2}+\eta_{i}
\end{aligned}
$$

for $i=1,2, \ldots, n$. Assume that the pairs $\left(\epsilon_{1}, \eta_{1}\right), \ldots,\left(\epsilon_{n}, \eta_{n}\right)$ are independent and identically distributed with $E\left(\epsilon_{i}\right)=E\left(\eta_{i}\right)=0, \operatorname{var}\left(\epsilon_{i}\right)=\operatorname{var}\left(\eta_{i}\right)=\sigma^{2}$ and $\operatorname{corr}\left(\epsilon_{i}, \eta_{i}\right)=$ ρ. Assume that ρ is known.
a. (5) Let

$$
\hat{\beta}=\frac{\sum_{i=1}^{n}\left(Y_{i 1} x_{i 1}+Y_{i 2} x_{i 2}\right)}{\sum_{i=1}^{n}\left(x_{i 1}^{2}+x_{i 2}^{2}\right)} .
$$

Is this estimator unbiased? Compute its standard error.
Solution: All the estimators in the sequel are of the form

$$
\hat{\beta}=\sum_{i=1}^{n}\left(a_{i} Y_{i 1}+b_{i} Y_{i 2}\right)
$$

for suitable a_{i} and b_{i}. We have

$$
E(\hat{\beta})=\beta \sum_{i=1}^{n}\left(a_{i} x_{i 1}+b_{i} x_{i 2}\right)
$$

and

$$
\operatorname{var}(\hat{\beta})=\sum_{i=1}^{n} \operatorname{var}\left(a_{i} Y_{i 1}+b_{i} Y_{i 2}\right)=\sigma^{2} \sum_{i=1}^{n}\left(a_{i}^{2}+b_{i}^{2}+2 \rho a_{i} b_{i}\right)
$$

Plugging in the respective a_{i} and b_{i} we find that all the estimators are unbiased and we derive the formulae for standard errors.
b. (5) Adding we get

$$
Y_{i 1}+Y_{i 2}=\beta\left(x_{i 1}+x_{i 2}\right)+\xi_{i},
$$

where $\xi_{i}=\epsilon_{i}+\eta_{i}$. The terms ξ_{1}, \ldots, ξ_{n} are uncorrelated with $E\left(\xi_{i}\right)=0$ and $\operatorname{var}\left(\xi_{i}\right)=\sigma^{2}(2+\rho)$. The parameter β can be estimated as

$$
\hat{\beta}=\frac{\sum_{i=1}^{n}\left(Y_{i 1}+Y_{i 2}\right)\left(x_{i 1}+x_{i 2}\right)}{\sum_{i=1}^{n}\left(x_{i 1}+x_{i 2}\right)^{2}} .
$$

Is this estimator unbiased? Compute ist standard error.
Solution: See a.
c. (5) Replace for each $i=1,2, \ldots, n$ the second equation by

$$
\frac{Y_{i 2}-\rho Y_{i 1}}{2(1-\rho)}=\beta\left(\frac{x_{i 2}-\rho x_{i 1}}{2(1-\rho)}\right)+\left(\frac{\eta_{i}-\rho \epsilon_{i}}{2(1-\rho)}\right) .
$$

Denote

$$
\tilde{Y}_{i 2}=\frac{Y_{i 2}-\rho Y_{i 1}}{2(1-\rho)} \quad \text { in } \quad \tilde{x}_{i 2}=\frac{x_{i 2}-\rho x_{i 1}}{2(1-\rho)} .
$$

Estimate β by

$$
\hat{\beta}=\frac{\sum_{i=1}^{n}\left(Y_{i 1} x_{i 1}+\tilde{Y}_{i 2} \tilde{x}_{i 2}\right)}{\sum_{i=1}^{n}\left(x_{i 1}^{2}+\tilde{x}_{i 2}^{2}\right)} .
$$

Is this estimate unbiased? Compute its standard error.
Solution: See a.
d. (10) Which of the above estimators has the smallest standard error? Explain.

Solution: Let

$$
\tilde{\eta}_{i}=\frac{\eta_{i}-\rho \epsilon_{i}}{2(1-\rho)} .
$$

This random variable is uncorrelated with ϵ_{i} and $E\left(\tilde{\eta}_{i}\right)=0$ and $\operatorname{var}\left(\tilde{\eta}_{i}\right)=\sigma^{2}$. The model in c. satisfies all the assumptions of the Gauss-Markov theorem which means that the estimator in c. is the best linear unbiased estimator of the parameters.

