School of Economics $\begin{array}{c} \text{Doctoral Programme in Economics} \\ \text{Probability and statistics} \\ \text{Written examination} \\ \text{February } 14^{\text{th}}, \ 2025 \end{array}$

Name and surname:	_ ID:				

Instructions

Read the problems carefully before starting your work. There are four problems. You can have a sheet with formulae and a mathematical handbook. Write your solutions on the paper provided. You have two hours.

Problem	a.	b.	c.	d.	Total
1.			•	•	
2.			•	•	
3.				•	
4.					
Total					

- 1. (25) A population of size N is divided into K groups of equal size M = N/K. A sample is selected in such a way that k groups are selected by simple random sampling, and then all the units in the selected groups are selected.
 - a. (10) Show that the sample average \bar{Y} is an unbiased estimate of the population mean.

Solution: let μ_i be the population mean in the *i*-th group. In the sampling procedure described we are choosing a simple random sample of groups and we observe μ_i for this group. The estimator \bar{Y} is just a sample average of the μ_i selected. The expectation is therefore the average of all μ_i s which is μ .

b. (15) Let μ_i be the population mean in group i for $i=1,2,\ldots,K$ and let μ be the population mean. Define

$$\sigma_b^2 = \frac{1}{K} \sum_{i=1}^K (\mu_i - \mu)^2$$
.

Show that

se
$$(\bar{Y}) = \frac{\sigma_b}{\sqrt{k}} \cdot \sqrt{\frac{K-k}{K-1}}$$
.

Solution: think of groups as units selected and to each group assign the value μ_i . The formula is then the formula for the standard error of such a sample average. But \bar{Y} is equal to this sample average.

2. (25) The Gumbel distribution of type 1 for extreme values is given by the density

$$f_X(x) = \frac{1}{\beta} e^{\frac{x-\mu}{\beta}} e^{-e^{\frac{x-\mu}{\beta}}}.$$

for $\beta > 0, -\infty < \mu < \infty$ and $-\infty < x < \infty$. Assume as known the following integrals

$$\begin{array}{l} \int_{-\infty}^{\infty} e^{2u}e^{-e^{u}}du = 1 \\ \int_{-\infty}^{\infty} ue^{u}e^{-e^{u}}du = -\gamma \,, \\ \int_{-\infty}^{\infty} ue^{2u}e^{-e^{u}}du = 1 - \gamma \,, \\ \int_{-\infty}^{\infty} u^{2}e^{2u}e^{-e^{u}}du = -2\gamma + \gamma^{2} + \frac{\pi^{2}}{6} \,, \end{array}$$

where $\gamma = 0,577216...$ is the Euler constant. Assume that the observed values are an i.i.d. sample from the Gumbel distribution.

a. (15) Compute the Fisher information matrix $I(\beta, \mu)$.

Solution: we have

$$\ell = -\log \beta + \frac{x - \mu}{\beta} - e^{-\frac{x - \mu}{\beta}}.$$

Taking partial derivatives we get

$$\begin{array}{lll} \frac{\partial^2 \ell}{\partial \beta^2} & = & -\frac{(x-\mu)^2 e^{\frac{x-\mu}{\beta}}}{\beta^4} - \frac{2(x-\mu) e^{\frac{x-\mu}{\beta}}}{\beta^3} + \frac{2(x-\mu)}{\beta^3} + \frac{1}{\beta^2} \\ \frac{\partial^2 \ell}{\partial \beta \partial \mu} & = & -\frac{(x-\mu) e^{\frac{x-\mu}{\beta}}}{\beta^3} - \frac{e^{\frac{x-\mu}{\beta}}}{\beta^2} + \frac{1}{\beta^2} \\ \frac{\partial^2 \ell}{\partial \mu^2} & = & -\frac{e^{\frac{x-\mu}{\beta}}}{\beta^2} \,. \end{array}$$

Introduce the new variable $u = (x - \mu)/\beta$ in all integrals. We get

$$-E\left(\frac{\partial^{2}\ell}{\partial\beta^{2}}\right) = \frac{1}{\beta^{2}} \int_{-\infty}^{\infty} \left(u^{2}e^{u} + 2ue^{u} - 2u - 1\right) e^{u}e^{-e^{u}} du$$

$$-E\left(\frac{\partial^{2}\ell}{\partial\beta\partial\mu}\right) = \frac{1}{\beta^{2}} \int_{-\infty}^{\infty} \left(ue^{u} + e^{u} - 1\right) e^{u}e^{-e^{u}} du$$

$$-E\left(\frac{\partial^{2}\ell}{\partial\mu^{2}}\right) = \frac{1}{\beta^{2}} \int_{-\infty}^{\infty} e^{u}e^{u}e^{-e^{u}} du$$

It follows

$$I(\beta,\mu) = \begin{pmatrix} \frac{1}{\beta^2} \left((1-\gamma)^2 + \pi^2/6 \right) & \frac{1-\gamma}{\beta^2} \\ \frac{1-\gamma}{\beta^2} & \frac{1}{\beta^2} \end{pmatrix}.$$

b. (10) Assume $\hat{\mu}$ and $\hat{\beta}$ are maximum likelihood estimates based on observed values x_1, x_2, \ldots, x_n . Give an approximate 95%-confidence interval for both parameters based on the observed values.

Solution: we compute

$$I^{-1}(\beta,\mu) = \frac{6\beta^2}{\pi^2} \begin{pmatrix} 1 & -1 + \gamma \\ -1 + \gamma & (1-\gamma)^2 + \pi^2/6 \end{pmatrix} .$$

We get

$$\operatorname{se}(\hat{\beta}) = \frac{\sqrt{6}\hat{\beta}}{\pi\sqrt{n}} \qquad in \qquad \operatorname{se}(\hat{\mu}) = \frac{\sqrt{6((1-\gamma)^2 + \pi^2/6)}\hat{\beta}}{\pi\sqrt{n}}.$$

The confidence intervals follow.

3. (25) Assume that your observations are pairs $(x_1, y_1), \ldots, (x_n, y_n)$. Assume the pairs are an i.i.d. sample from the bivariate normal density

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}}e^{-\frac{(x-\mu)^2-2\rho(x-\mu)(y-\nu)+(y-\nu)^2}{2(1-\rho^2)}}$$
.

Assume that $\rho \in (-1,1)$ is known. We would like to test the hypothesis

$$H_0: \mu = \nu$$
 versus $H_1: \mu \neq \nu$.

a. (10) Find the maximum likelihood estimates for μ and ν .

Solution: the log-likelihood function is

$$-n\log 2\pi - \frac{n}{2}\log(1-\rho^2)$$

$$-\frac{1}{2(1-\rho^2)}\sum_{k=1}^n \left[(x_k - \mu)^2 - 2\rho(x_k - \mu)(y_k - \nu) + (y_k - \nu)^2 \right].$$

Taking partial derivatives we get

$$\frac{\partial \ell}{\partial \mu} = \frac{1}{1 - \rho^2} \sum_{k=1}^{n} \left[(x_k - \mu) - \rho(y_k - \nu) \right]$$

and

$$\frac{\partial \ell}{\partial \nu} = \frac{1}{1 - \rho^2} \sum_{k=1}^{n} \left[-\rho(x_k - \mu) + (y_k - \nu) \right].$$

The partial derivatives are set to 0 and we get the system of linear equations equal to

$$n\mu - \rho n\nu = \sum_{k=1}^{n} x_k - \rho \sum_{k=1}^{n} y_k - \rho n\mu + n\nu = -\rho \sum_{k=1}^{n} x_k + \sum_{k=1}^{n} y_k$$

Dividing by n and solving for μ and ν we get

$$\hat{\mu} = \bar{x}$$
 in $\hat{\nu} = \bar{y}$.

b. (10) Find the likelihood ratio statistic for testing the above hypothesis. What is the approximate distribution of the test statistic under H_0 ?

Solution: if $\mu = \nu$, the likelihood function reduces to

$$-n\log 2\pi - \frac{n}{2}\log(1-\rho^2)$$

$$-\frac{1}{2(1-\rho^2)}\sum_{k=1}^n\left[(x_k-\mu)^2-2\rho(x_k-\mu)(y_k-\mu)+(y_k-\mu)^2\right].$$

We have

$$\frac{\partial \ell}{\partial \mu} = \frac{1}{1 - \rho^2} \sum_{k=1}^{n} \left[(x_k - \mu) - \rho(y_k - \mu) - \rho(x_k - \mu) + (y_k - \mu) \right].$$

The constrained maxumum likelihood estimate is

$$\tilde{\mu} = \tilde{\nu} = \frac{\bar{x} + \bar{y}}{2} \,.$$

By definition

$$\lambda = 2\log(\hat{\mu}, \hat{\nu}|\mathbf{x}, \mathbf{y}) - 2\log(\tilde{\mu}, \tilde{\nu}|\mathbf{x}, \mathbf{y}).$$

In more compact form we get

$$\log(\hat{\mu}, \hat{\nu} | \mathbf{x}, \mathbf{y})$$

$$= -n \log 2\pi - \frac{n}{2} \log(1 - \rho^2)$$

$$-\frac{1}{2(1 - \rho^2)} \left[\sum_{k=1}^{n} x_k^2 - n\bar{x}^2 - 2\rho \left(\sum_{k=1}^{n} x_k y_k - n\bar{x}\bar{y} \right) + \sum_{k=1}^{n} y_k^2 - n\bar{y}^2 \right]$$

and

$$\begin{split} \log(\tilde{\mu}, \tilde{\nu} | \mathbf{x}, \mathbf{y}) &= -n \log 2\pi - \frac{n}{2} \log(1 - \rho^2) \\ &- \frac{1}{2(1 - \rho^2)} \left[\sum_{k=1}^n x_k^2 - n\bar{x}(\bar{x} + \bar{y}) + \frac{n}{4}(\bar{x} + \bar{y})^2 \right. \\ &- 2\rho \left(\sum_{k=1}^n x_k y_k - \frac{n\bar{x}}{2}(\bar{x} + \bar{y}) - \frac{n\bar{y}}{2}(\bar{x} + \bar{y}) + \frac{n}{4}(\bar{x} + \bar{y})^2 \right) \\ &+ \sum_{k=1}^n y_k^2 - n\bar{y}(\bar{x} + \bar{y}) + \frac{n}{4}(\bar{x} + \bar{y})^2 \right] \\ &= -\frac{1}{2(1 - \rho^2)} \left[\sum_{k=1}^n (x_k^2 + y_k^2 - 2\rho x_k y_k) - n(1 - \rho)(\bar{x} + \bar{y})^2 \right] . \end{split}$$

We have

$$\lambda = \frac{n}{1 - \rho^2} \left[\bar{x}^2 - 2\rho \bar{x}\bar{y} + \bar{y}^2 - \frac{1}{2}(1 - \rho)(\bar{x} + \bar{y})^2 \right]$$

or alternatively

$$\lambda = \frac{n}{2 - 2\rho} \left(\bar{x} - \bar{y} \right)^2.$$

The approximate distribution of λ is $\chi^2(1)$ by Wilks's theorem. In fact, the $\chi^2(1)$ distribution is the exact distribution of λ .

c. (5) What is the distribution of X - Y if H_0 holds? Can you use the result to give an alternative test statistic to test the above hypothesis? What is the distribution of your test statistic under H_0 ?

Solution: The distribution of the difference if H_0 holds is $N(0, 2-2\rho)$. We can apply the usual z-test to the observed values $z_1 = x_1 - y_1, \ldots, x_n - y_n$ since the variance is known. We get exactly the test from the previous part.

4. (25) Assume the regression equations are

$$Y_k = \alpha + \beta x_k + \epsilon_k$$

for k = 1, 2, ..., n. The error terms satisfy the assumptions that

$$E(\epsilon_k) = 0$$
 and $var(\epsilon_k) = \sigma^2(1 + \tau^2)$

for k = 1, 2, ..., n, and

$$cov(\epsilon_k, \epsilon_l) = \sigma^2 \tau^2$$

for $k \neq l$, where τ^2 is assumed to be a known constant. Assume that $\sum_{k=1}^n x_k = 0$.

a. (5) Let

$$\hat{\alpha} = \frac{1}{n} \sum_{k=1}^{n} Y_k$$
 and $\hat{\beta} = \frac{\sum_{k=1}^{n} x_k Y_k}{\sum_{k=1}^{n} x_k^2}$

be the ordinary least squares estimators of the two regression parameters. Show that the estimators are unbiased.

Solution: from the assumptions we have

$$E\left(\begin{pmatrix} \hat{\alpha} \\ \hat{\beta} \end{pmatrix}\right) = \begin{pmatrix} \frac{1}{n} \sum_{k=1}^{n} (\alpha + \beta + E(\epsilon_k)) \\ \frac{\sum_{k=1}^{n} x_k (\alpha + \beta x_k + E(\epsilon_k))}{\sum_{k=1}^{n} x_k^2} \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

b. (5) Let

$$\begin{pmatrix} \tilde{\alpha} \\ \tilde{\beta} \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^{n} a_k Y_k \\ \sum_{k=1}^{n} b_k Y_k \end{pmatrix}$$

be a linear unbiased estimator of the regression parameters. Compute

$$cov(\tilde{\alpha} - \hat{\alpha}, \hat{\alpha})$$
.

Solution: by assumption

$$E\left(\sum_{k=1}^{n} a_k E(Y_k)\right) = \sum_{k=1}^{n} a_k (\alpha + \beta x_k) = \alpha$$

which means $\sum_{k=1}^{n} a_k = 1$. Compute

$$cov(\tilde{\alpha} - \hat{\alpha}, \hat{\alpha})$$

$$= \frac{1}{n}cov\left(\sum_{k=1}^{n} (a_k - \frac{1}{n})Y_k, \sum_{l=1}^{n} Y_l\right)$$

$$= \frac{1}{n}\sum_{k=1}^{n} \left(a_k - \frac{1}{n}\right)\sigma^2(1 + \tau^2)$$

$$+ \frac{1}{n}\sum_{k \neq l} \frac{1}{n} \left(a_k - \frac{1}{n}\right)\sigma^2\tau^2$$

= 0.

c. (5) Find the best unbiased linear estimator of α .

Solution: compute

$$\operatorname{var}(\tilde{\alpha}) = \operatorname{var}(\tilde{\alpha} - \hat{\alpha} + \hat{\alpha}) + \operatorname{var}(\hat{\alpha}) + \operatorname{var}(\tilde{\alpha} - \hat{\alpha}) \ge \operatorname{var}(\hat{\alpha}).$$

The assertion follows.

d. (10) Find the best unbiased linear estimator of β .

Solution: by assumption

$$E\left(\tilde{\beta}\right) = \sum_{k=1}^{n} b_k(\alpha + \beta x_k)$$

which implies $\sum_{k=1}^{n} b_k = 0$ and $\sum_{k=1}^{n} b_k x_k = 1$. Denote $\sum_{k=1}^{n} x_k^2 = s$ and compute

$$cov(\tilde{\beta} - \hat{\beta}, \hat{\beta})$$

$$= cov\left(\sum_{k=1}^{n} \left(b_k - \frac{x_k}{s}\right) Y_k, \sum_{l=1}^{n} \frac{x_l}{s} Y_l\right)$$

$$= \sum_{k=1}^{n} \left(b_k - \frac{x_k}{s}\right) \left(\frac{x_k}{s}\right) \sigma^2 (1 + \tau^2)$$

$$\sum_{k \neq l} \left(b_k - \frac{x_k}{s}\right) \frac{x_l}{s} \sigma^2 \tau^2$$

$$= 0.$$

The assertion about the best unbiased linear estimator follows the same way as in c.