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Abstract.

In this paper the problem of G? continuous interpolation of curves in R? by poly-
nomial splines of degree n is studied. The interpolation of the data points, and two
tangent directions at the boundary is considered. The case n = r + 2 = d, where r
is the number of interior points interpolated by each segment of the spline curve, is
studied in detail. It is shown that the problem is uniquely solvable asymptotically, i.e.,
when the data points are sampled regularly and sufficiently dense, and lie on a regular,
convex parametric curve in R?. In this case the optimal approximation order is also
determined.
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1 Introduction.

The problem of parametric polynomial interpolation of data points in R? has
already been studied in [1]-[5], [7], [9] and [10]. Perhaps [1] gave the first impe-
tus to this subject. In [9], a nice general approach of increasing the approxima-
tion order by parametric polynomial interpolation methods has been developed.
Here, we apply this general approach to the G? continuous spline case.

The geometric continuity is usually chosen in geometric design, since it refers
to a particular parametrisation, and assures that the geometric invariants of the
curve, i.e., the tangent direction, the curvature, etc., are continuous, but re-
moves the influence of the parametrisation on the shape of the curve. Of course,
it is usually sufficient to require G? continuity, since it is almost impossible to
recognize the discontinuities of the higher order derivatives by the human eye.
The problem in its general form has already been considered in [5] and [7], and
can be stated as follows. Let

(1.1) B:=B, : [(,(n] = R?

be the polynomial spline curve of degree n composed by m segments with break-
point sequence

C0<<1<---<Cm-
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Suppose points
(1.2) To,T1,..., TN e€R, T;#Tj, j=0,1,...,N—1,

and tangent directions
(13) dOa dN7

at the boundary points Ty and T'x are given. Find a polynomial spline B
defined by (1.1) which is G? continuous and interpolates given points and tangent
directions.

Locally, on the /-th segment, B can be given as

C—Cr1
A1

where A{y—1 := (s —(y—1. Since B has to interpolate the data (1.2) and (1.3), its
£-th polynomial piece B’ should interpolate r interior and two boundary points.
The interpolating conditions on the /-th segment now read

(1.4) B(o::Bf( ) Celtnl £=1,...,m,

(1.5) Bl(t[’j) :T(r+1)(€—1)+j =Ty;, 7=01,...,7r+1,
where
teo:=0<tp1 < <tpr<tgry1:=1,

and (tr,j)j-, are unknown parameter values which have to be determined. It
remains to fulfil the G' continuity conditions. The G continuity can be written
in the local parametrisation, i.e., t;, 0 < t, <1, as

d

d_tlBl(O) = apdo,
(1.6) LBM(O) = aZiB’Z(l) (=1,2,....m—1
dtg+1 dtl 9 < ) 9
d

and the G? continuity relations read

& ,

1. B"N0) =a} —

B'(1) + By iBfu), (=1,...,m—1,
dt,

where ay and [, are unknowns and ay > 0. Fig. 1.1 shows a particular polyno-
mial piece B that joins its neighbors.

As already observed in [5], the assumption that the number of independent equa-
tions should be equal to the number of unknowns implies the following relation

(1.8) dn—(d—1)r=3d-2.

This leads to two practically important cases, n =r+2 =dandn=r+1 =
2d — 1, i.e., the interpolation by polynomial splines of low degree.
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Figure 1.1: A particular segment of the spline curve and some of the important
quantities.

The particular case d = 3 was asymptotically (i.e. for the data sampled on
a regular curve dense enough) solved in [5]. Its extension to general d, but for
segments only, can be found in [7]. Here we tackle the composite case. For the
second case, i.e., n =r + 1 =2d — 1, the approach explained here fails and will
require some additional research.

The main result of the paper can be stated as follows.

THEOREM 1.1. If the data points are sampled reqularly and sufficiently dense,
then there exists a G polynomial spline curve B, which interpolates given data
points and tangent directions at the boundary. The approximation order is opti-
mal, i.e., r+4=n+ 2.

The regularity of data point mentioned in the above theorem should be ex-
plained. It is clear that the solution depends on the structure of the data and we
can not expect that the problem will be solvable for the arbitrary set of points.
Since the asymptotic analysis will be done, the data points will be considered
as points on a smooth curve. They will be sampled regularly in the sense that
the distribution of points according to the arc length remains the same for all
segments. And sufficiently dense means that the neighboring points are close
enough to each other.

It is also clear that the approximation order is optimal since we have r + 4
interpolation conditions on each segment (r + 2 interpolated points and two
conditions for two joining segments concerning G' and G? continuity, i.e., one
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condition for each segment at the breakpoint).

2 The system of nonlinear equations for n =r + 2 = d.

In this section, the system of nonlinear equations (1.5)—(1.7) will be trans-
formed further for this particular case. Since n = r + 2, the polynomial curve

r—+1
(2.1) B(t) :=brw(t) + Y _ Lo j(OTy,
=0

will satisfy the interpolation conditions (1.5) on [(;—1, (s]. Here

onlt) = T[( = te) Loglt) = 20y,
‘ o e (t —tej)we(te;)’ = dte

Provided ¢, ; are known, the unknown leading coefficient vector b, can be ex-
pressed in two different ways

b( - [t(705t€70atf71a' . atfﬂ”atfﬂ"i‘l]B[
(22) = [tl,Oatl,la- .. 7tﬂ,ratl,r+17t€,r+1]B£-

Since tg0 =0, tgr4+1 = 1, and for a smooth f

i
1
(2.3) [xo’mo’wl"“’wi]f:Zm[ﬂfo,wj]f,
j=0 “\%i
the equation (2.2) can be rewritten as
1 ) r+1 1

14 LLJ((O) ( ) ]; W[(tL]')tLj( L, l,O)

(24) - LBy (Ty; —Topin)
. we(1) = w,g(t,g,j)(t” —1) (2% 0r41)-

Inserting (2.1) into (1.7) and using (2.4), (1.6) in order to replace by, bgr1 by
Be(l), one concludes that

r r+1

y (1) .
B‘1) = ey @) p o, Loj(D)Te;
0 v [ a2 ]go ORI 1)( 0;—Ttrs1) -I-j;o i (1T,
r+1 - -
(25) _ Z : w€+1(0) (T£+1,j — Tl+1,0) + Zﬁf+1,j (O)Tl+1’j
= Wet1 (Legt,5) tegrj j=0

Ve = <J}H1(O) o — @(15 aj — Bz) h :

wey1(0) we(1
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If we write
(_ N Be(0) S,
G, = - (Tos1,; —Teq10) + Z££+1,j(0)Tﬂ+l,ja
= wen(berr ) e =
r w;(].) r+1
Gt = — (T, —Ty, Lo:(DTy.,
1 — wl(tf,]’)(tL] — 1)( £,j £, +1) + ZO L]( ) [
]_ J_
and
r 1 r+1 1
H, = ———(T¢; —Tory1) — ————(T¢; —Typ),
= @elteg) (tey = 1)( ! +) ]2 we(te,;) tz,j( ! 0

then relation (1.6) leads by of (2.4), (2.5) to the following system of nonlinear
equations

F, = @j(ln (02Gl -Gl + H, — %(Oo)do =0,
F, = a;Z((l) (a7 G1 —Gg) + H,

(2.6) - %(ai,ﬁf” —GLY, 1=23,...,m—1,
Fp = g fmdy o+ Ho = 2200l G -G,

Note that the equations for the first and for the last segment are different since
dy and dy are given. Thus one has md nonlinear equations for md scalar
unknowns
, -1
(teg)izy jors (@0)iZos  (v0)iy -
The best way to tackle such systems of nonlinear equations turned out to be the
homotopy continuation methods, as was reported in [3]-[5].

3 Asymptotic analysis.

Since the system of nonlinear equations obtained in the previous section is
difficult to analyze in full generality, the asymptotic analysis will be applied
here. Under certain conditions the existence of the unique asymptotic solution
of the system (2.6) will be proved. This will be done in the following way. First,
the solution at the limit point will be found. Then the regularity of the Jacobian
matrix of the analyzed system at the limit point will be proven. Since it is very
difficult to do it in the general case, the regular distribution of the data points
(i.e. the distribution of the parameter values at which the underlying curve
match the data in the arc length parametrisation is equal for all the segments)
will be required, which assures the Jacobian being the Toeplitz-like matrix. It
makes it easier to analyze, since one can apply the general theory of systems of
difference equations. After that the implicit function theorem will be used to
establish the existence of the solution in the neighborhood of the limit solution.
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Suppose that the data (1.2) and (1.3) are based upon a smooth regular para-
metric curve f : [0, L] — R?, parametrized by the arc length parameter. Obvi-
ously, (2.6) involves data and unknowns from three consecutive segments only.
Let us recall the fact, observed in [3], that each block of equations can be simpli-
fied by some translation and rotation. So f can be, without loosing generality,
locally parametrized by the arc length parameter s as

(3.1) F(s), s €[—he_1,he+ hesi],

with hg := §; h and bounded global mesh ratio 0 < §y < §; < 1, where

d
f0)=Teo:=0, —f(0)=er
s
Here e; is the unit vector, i.e.,

e;(0) :=1[0,0,...,0,1,0,...,0]".
%/—/ S——

i—1 d—i

The domain of the definition of the arc length parameter s in (3.1) was chosen
to assure that the origin of the local coordinate system is in Ty at s = 0, and
s runs over the three neighboring segments of the underlying curve f which are
involved in the particular set of equations which has to be analyzed.

If the k¢, i = 1,2,...,d — 1, are the first d — 1 principal curvatures of fl,
expanded locally as

. 1 1
’%(5)_’%0"‘1, 218+2| 7,28 +.

and fé is a regular curve in the sense that

dd—l
o dsdfl

d . ¢
Ef ’ f
are linearly independent vectors in R?, then

nf70200nst>0, 1=1,2,...,d— 2.

Additionally, we shall assume that ”fl—Lo > const > 0. With the aid of the
Frenet-Serret formulae and the expansion of the principal curvatures, one obtains
the local expansion

d 1 d?
) = £+ T FO) s+ o s f 05+
B2 = FO+ -5 e
+ (%H§7082+%H§7183+ )e2+(é/’€10/‘€gos + - )33‘|‘"‘
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Using (3.1), the data points can be written as

Toor; = flhemt (ne—1j— 1)),
(3-3) Te; = f'(heney),

where Ne,o = 0< Net < oo < Mgy < N1 1= 17 l = 1a27"'7m7 are given
parameter values. The expansion (3.2) and the equations (3.3) finally give

; d
AR ,
(3.4) T,; = lhz Simi = H ﬁg,o + O(hz+1)] )
S e=l i=1

Applying these expansions to the equations (2.6) and multiplying them by D[l,

where
1 1 1 d—1 ,
: d
D, = diag h,5h2 Hﬁgﬁ’“"ah anp ,
q=1 q=1
the normalized system of nonlinear equations reads
(3.5) F,:=D;'F;=0, (=1,2,...,m.
Let
%lfl,j = Dngfij = [512.;—1 (Me—1,5 — 1)i ?:1 + O(h),
(3.6) Tyj =Dy Te;=[8m ;e + O,
Ty g =Dy Togrj = [(0c + 0ep1merr ) 1y + O(h),

and
~ Qg ~ Qm,
Qg = —, Q= —.

h

The limit solution of the normalized system is given by the following lemma.
LEMMA 3.1. As h — 0, the solution of the system (8.5) is

ag = &
o = 5‘3—;1, (=1,2,....,m—1
B.7) a, = om
tr;, = Mg, (=12....m, j=12,...,r
o= <§z+1‘;f’z+1(0)_5%+1d:};f(1)>_1, (=12 .m-1,
de wiy,(0) o wp(1)

where
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PROOF. The proof is rather technical and some details will be omitted. The
limit behavior of the relation (3.5) as h — 0 has to be shown. Since all the
calculations are similar, we will, e.g., show how

r+1 . r+1
: 101 _ @7 (0) _
(3.8) flblg%) D, "Gy = jE 1 7(” J) i ;ILIE})(T” Tp o)+ E El] hm TL],

can be simplified to

2, _ 9i(0)
25! €2 w};(O) 5461.
Here )
. wj(t
Ly ;(t) = ¢

)= o )
(t —t; Jwi(t7 ;)

Recall that (3.8) is a part of the nonlinear equation Fy = 0 considered at the
limit point.

For the first part of expression (3.8), the relation (3.6) and well-known properties
of the divided differences are used, which gives

r+1 wZ(O) r4+1 1 L
——— lim (Tg - Tg 0) =&;(0) ﬁ[ t* - —
;wé(t“)t“ —o e ;w(t“) ¢ !
ek * * 7 z w*(O) * I
= OFO)[thostsas- -t pqall 0y T Iy — w;(o) [0} tio gk

) 2%(0)
= O¥0)6%e —O:J’Z( dre;.
(( ) L d w;(o) €1

For the second part recall also the identities

r+1
=3 17,51, ¢=0,1,...,r+1,

and
r+1

=W (t) + Yt L (),
Jj=0

which are applied to obtain

r+1 .,
ch 5(0) lim Ty ; = 267 es — 6¢ 57 (0) eq.
? h—0

Similarly the other terms of (3.5) are handled and it is easy to show that they
sum to zero which completes the proof of the lemma. O

It remains to prove the regularity of the Jacobian of the nonlinear system
(3.5) at the limit solution. To simplify the calculation of the partial derivatives,
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it is more convenient to reverse the role of the unknowns and the parameters,
as in [9]. The implicit function theorem can then be applied at the end to
complete the proof. So let us assume for a while that ¢, = (t“);’g’j:l are given
parameters, and 9, = (1),7) ;2] j=1 are the unknowns. Explicit computation of
the Jacobian requires a particular ordering of the unknowns. The following one
will be considered:

Qo M1 V1, Q1,95 V2 - ooy Ym—15 Om—15 Ty s A

This ordering and the fact that there are only three neighboring segments in-
volved in the particular set of equations of the nonlinear system (3.5), imply that
the Jacobian is a block tridiagonal matrix. But the study of its regularity is still
very difficult, and some further assumptions are needed. Suppose that the data
points are regularly sampled. It means that the lengths of the segments of the
curve f are all equal, i.e, 6, = 1 for all /, and the components of the vector &,
(which are parameters now) are equally distributed on each segment, i.e.,

tj:=te;, £=1,2,....m, j=0,1,...,r+1L
The limit solution from lemma 3.1 then becomes

~%

ay, = a,=a,=1, (=1,2,...,m—1,
(3.9) un =1,2,....m, j=1,2,...,r

ti, £
Y € (UN-TCO A NP
R b - BREG | ()

=0

and the Jacobian, say J,,, is a block tridiagonal Toeplitz-like matrix. This
property will be used to prove the regularity of .J,,, at least for m large enough
which will imply the theorem 1.1 stated in the introduction.

What follows now is the technical part of the proof of the theorem.

First the Jacobian J,, of the system at the limit point will be derived. If the
notation a := w(1)/w(0), b := &(1)/w(l), ¢ := 2~v*, and u; = t;/(t; — 1) is used,
the columns of .J,, arising from the ¢-th segment (1 < £ < m) of the normalized
system (3.5) and computed at the limit (3.9), are

e e o R
G = —w(z)c[l,o,...,O]T,
8aag,1ﬁ‘q = _ﬁ[l—bC,Qc,O,.._,o]T’
I e AL
AP = L,

e cw(l)
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a I —_— c . . d
OTQF( - @(1)[1(1_1—b)]i:1,
8 F = y i—11d
DMesry at? o(t;) [i(t;+ 1) ey

Other unknowns are not involved in the equations for the /-th segment and the
corresponding partial derivatives are zero. Similarly the columns of the first
and the last diagonal blocks are derived. Multiplication of the obtained matrix
by L = diag(L1, La,...,Ly), where L; = diag(1,1/2,...,1/d), i =1,2,...,m,
from the left, and by R = diag(R1, Rz, ..., Rn),

Ry = diag(—o(0),07,0(1)¢/2),

R; diag(—w(0)/c, 0T, w(1)¢/2), j=2,3,...,m—1,

R, = dlag(—w(O)/c, 'UT,LL)(].)),
where v = [t; (t; — 1) w(t;)/c]}—,, from the right, produces the matrices Ay, A,
B, C and AQ,

1 (fe—u)ty -+ (Afe—u)t? 1
0 (fe—untt - (Qfe—u)tl 1
A1= . . . . . )
0 (1/c—uw)td™" - (Ife—u)tdt 1
]./C—b aj; Q12 - Q1p 1
1 a1 G2 -cc Gz 1
A= 0 azgt agy - oag 1|
0 aq1 Qg2 - agr 1
where ag; := (1/c — u; — 1/uy) tffl,
b/a (hh+1)°/(aur) -+ (tr+1)°/(au,) 0
5 —(1-0b)/a (t+ 1)/ (au) -+ (tr+1)'/(au,) O
—d=T=Ba (a0 (am) o (et D (au) 0
0 auy(t—1° - au.(t,—1)° —a
0 au(ti—1" - aup(t, —1)" 0
C: . . . . . 3
0 auy(t; —1D)Y - au.(t,—1)91 0
and
(1/e—=b) (1/e—1/u)t? - (1)e—1/u)td 1
1 (1/e=1/u)tl - (Afe=1/u)tl 1
Ay = 0 (1fe=1/u)t? - (Afe=1/u)t2 1

[

6 (l/c—l‘/ul)tf*1 (l/c—li/u,,)tf’1
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Note that all these matrices are quadratic since d = r + 2.
The transformed Jacobian, say J,,, now becomes

T4, B 0 0 - - 0T
C A B 0 -+ -+ 0
0 C A . . .0
(3.10) Jn:=LJ.R=| 0 0
Do A B 0
: : : C A B
L0 0 0 0 C A, |

11

Observe that the first and the last diagonal blocks are different from the others,
since the tangent directions at the boundary are given. This is why the obtained

matrix is block Toeplitz-like and not exactly block Toeplitz.

_Matrices L and R are obviously invertible. Consequently, .J, is invertible if
Jm = L J R is. Tt will be shown that .J,,, is invertible for m large enough. The
fact that the matrix is block Toeplitz-like will be used. In this case the problem of
the non-singularity of the matrix is closely connected with a particular system
of difference equations. The solutions of this system depend mainly on the

structure of the polynomial
m(A) =det(C + XA+ M B), \eC,

and the following lemma will be proved first.
LEMMA 3.2. The determinant 7 is explicitly

m(A) = det V(0,t1,...,tp, 1) Ama(A)" T

where

1 1
WQ(A):EA2+<E—2> )\-I-a,

and V(0,t1,...,t.,1) is the Vandermonde matriz.

ProOOF. Let
P = (C+ XA+ XN B)diag(1,t; (t; —1),...,t, (t, — 1),1)
A(1/e=b)+Xb/a p1 - pir A—a
A=XN(1=b/a pn - po A
= _>‘2(2_b)/a’ P31 DP3r A ,
N (d-1-b)/a par - par A
where
pej = aty(t;— DR N(t (8 — 1) /e—t5 — (t; - 1)*) 5 +

+ A2ty =12 (t; + 1) a.
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The approach based upon [8] will be used now. By the definition of the determi-
nant, det P is a polynomial in variables t1,ts,...,¢.. A brief look at the entries
of the matrix P reveals that the total degree of its determinant is at most

d 2
(3.11) Yke+1)=" ;W.
k=3

So, if all the zeros are guessed, one has to find the leading coefficient only. Note
that

A

d T

Pkj)p— = —(A—a, ..., )",

(Prj )k 1|t]-:0 a( )

(pkj)Z:1| = —(A—a\..., )T
ti=1

are both proportional to the last column of P. Also, only one column of P
depends on fixed ¢;, and

0 4 N ra a a T
— (Prj) = ——2-—-—-2,—--1,0,1,2,...,d—-3
atj(pkj)k71|tj:0 a [ 2\ e Y y Uy Ly &y ; ;
0 d T
— (Prj) = [2a,a— X\, —2)\,=3\,...,(—d+1)A
ooty = | (~d+1) A

1

+ A (—-2>[L1,.”1F}
c

and again the first, the (j + 1)-th , and the last column are linearly dependent.
Thus det P vanishes twofold at ¢; = 0,1. Since it vanishes also for ¢; = t;,

P#7

-
(3.12) detP=g [[t3t; - 1> [[ (-t

=1 1<j<k<r
with g possibly depending only on other parameters, but not on t¢i,ts...,t.,

since the rest of the product is already of total degree

w7 4T
2/ 2 ’

which equals (3.11). Even more, g must equal (for example) the coefficient of the
term ¢} ¢35 ---t2*! in det P. Since this term is involved in the considered deter-

. . . 2 2
minant only twice, namely in pig p2,ri1 H;; pjj—2 and poo P11 H;; Djj—2,
an easy computation gives the desired coefficient

g={=1"(A(1/c=b) +Nb/a) X+ (=1)""T (A= N* (1 = b)/a) (A - a)}
r+2
X H(/\2/a-|-)\(1/c— 2) +a)=(—1)"AX(N2/a+X(1/c—2)+a)" Tt

j=3
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The result of the lemma follows after (3.12) is divided by H;Zl t; (t; —1). O

Since the roots of m will be of particular interest, the following observation
will be useful.

LEMMA 3.3. There exist only three distinct real roots of w, namely Ao = 0,
A1 and Ay. Moreover, A1, Ay # a and one of the roots, say \s, is dominant, i.e.,
|/\1| < |/\2|

PRrROOF. By lemma 3.2, the roots of 7 consists of Ag = 0 and the roots of 5.
Since 7y is quadratic polynomial and (1/¢—2)? —4 > 0 (because ¢ < 0), A\; and
X» are real and distinct. The relation A; As = a? > 0 then implies that \; and
A2 have the same sign and none of them equals a. Consequently |A1| # [A2|. O

These facts will be used to prove the following theorem.

THEOREM 3.4. If m is large enough, then the matriz J,, is nonsingular.

PROOF. It is by (3.10) enough to show that .J,,, is nonsingular if m is sufficiently
large. Suppose that there is z € R and jm z = 0. It will be shown that £ =0
if m is large enough. Let us rewrite the equation .J,,, £ = 0 in the block form

T_m,
T—mi+1
(3.13) J,, : =0, z,€RY l(=—-my,—mi+1,...,ms+1,
Ty

zmz—‘,—l

where m; +my = m—2 and m > 2. Since J,, is given by (3.10), equation (3.13)
is equivalent to the following system of difference equations

Aiz_p, +Bz_pyyy1 = 0
(314) ng_l +AZ[+BZ[+1 = 0, (= —m1 +1,...,’ITL2
C’zm2 + Ame2+1 = 0.

In order to apply the general theory of difference equations ([6], p. 181-227),
the system (3.14) will be first transformed to the system of difference equations
of the first order. Let

y(:[zjf_l , L=—my,—mq1+1,...,ms.
Now (3.14) is equivalent to
(3.15) My, 1 =Ny, L=-my,—mi+1,...,mz—1,
where

M:{ég} and Nz{_oc, _IA],

with T the identity in R?*¢, and the boundary conditions

(3.16) [ Bly_,,, =0,
(3.17) [C As]y,,, = 0.
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LEMMA 3.5. Let w(\) :=det(N — AM). Then © has three real roots, Ao =0,
A1 and Ao of multiplicity 1, r + 1 and r + 1 respectively. The general solution of
(8.15) is

Y o = PI et
Yo = PJEC, Ez—m1+1,—m1+2,...,m2—1,
Ym, = PJ™cH+cxoerq,

where P = [Py Ps] is the matriz of generalized eigenvectors and principal vectors
of the matriz pencil N — XM corresponding to A1 and \o, J = diag(J1, J2) is
the corresponding block Jordan matriz and [co,c’,cso]t € R24 is a vector of
arbitrary constants.

PROOF. It is easy to verify that

det(N —AM) =det(C + XA+ \* B) = n(\).

By lemma 3.2, m has three roots, Ag = 0, A; and Ay of multiplicity 1, » + 1 and
r + 1 respectively. Since the degree of 7 is 2r + 3 = 2d — 1 < 2d, it has exactly
one root at infinity, say As.

To find a general solution of (3.15), one has to construct the canonical forms of
N-X\M,i=0,1,2and \g N — M. It is then well known ([6], p. 225-227) that
the general solution of (3.15) is

y—m1 = P‘]—mlc+ CoZ,
Yy, = PJ¢, f(=-mi+1,-mi+2,...,my—1,
ymz = PJmZC+ COOw7

where P = [P, P] is the matrix of generalized eigenvectors and principal vectors
corresponding to Ay and A2, J = diag(Jy, J2) is the corresponding block Jordan
matrix, [co, e’ cs0]’ € R2? is a vector of arbitrary constants, z is a generalized
eigenvector corresponding to Ao, and w is a generalized eigenvector correspond-
ing to Aso. Since Nz = Mw = 0 and the first column of C' and the last column
of B are zero, we have z € Lin{e, }, w € Lin{ezq}. Consequently, we my assume
that z = e; and w = eay. B
Since it is also known that the matrix P = [z P w] is nonsingular, the solution
space of (3.15) has dimension 2 d and there are no other solutions. O

The result of the theorem 3.4 will follow if one can prove that the boundary
conditions (3.16) and (3.17) imply ¢p = ¢so = 0 and ¢ = 0 for my and mo
sufficiently large. Namely, if this is true, theny, =0, { = —mq,—m1+1,...,ma,
which implies £y =0, £ = —my,—my + 1,...,mz + 1 and ker Ty = {0}.

It is in fact enough to show that ¢ = 0. Namely, if ¢ = 0, then the first
boundary condition (3.16) becomes

[Al B] y*ml = Cp [Al B] zZ = Cp [Al B] e = 0.

Since [A; B]e; is the first column of A;, which is nonzero, ¢y must be zero.
Similarly, the second boundary condition reads as

(C A2]Y,,, = Coo [C Az2]w = ¢ [C As] €24 = 0.
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The last column of A, is clearly nonzero, which implies ¢y, = 0.
It remains to prove that ¢ is zero. Suppose ¢ # 0. There exists an index i,
1 < i <2d- 2, for which ¢; # 0. Two cases have to be considered.

a) Let 1 <17 < d—1. Since by lemma 3.3 |A;| < |\2], the dominant eigenvalue
of J=1is 1/ and the power method asserts that if m; is large enough,

1

E— . —m1 — 27 1
T P e = w01 /m),

where u is a generalized eigenvector corresponding to A;. Suppose first
that |A1| # 1. The normalized boundary condition (3.16) implies
(3.18) [A; B]u=0.

We shall show that @ must be zero which is an obvious contradiction. Since

 is a generalized eigenvector corresponding to A1, the relation (N -\ M)u
holds, and

(319) (C+A1A+>\%B)’U,1:0, u2:A1u1, u= |:Zl :|
2

Together with (3.18) one now concludes
(320) (C + >\1 (A — Al))ul =0.

Let us define the matrix S(A\) := C' + A(A — 4;).
LEMMA 3.6. The determinant of the matriz S(N\) is explicitly

det S(A) = (—=1)"a det V(0,t1,t2,...,tr, 1) A (A —a)".

PRrOOF. Determinant det S(A) can be written as

A(]./C—b— ].) S11 S12 S1r —a
A 521 S22t Sap 0
det 0 531 S32 '+ S3p U
0 Sr421 Sp422 't Spp2p 0

where 1
k-1 k-1
Sk]’:a’u]'(tj—].) _/\U,_jtj .
Using some basic properties of determinants, it simplifies to
det S(A) = (=1)"a X det[sk; 175",

The remaining determinant can be easily computed by following the ideas
of the proof of lemma 3.2. 0O
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By lemma 3.3, A\; # 0,a and the determinant of S(\;) must be nonzero.
But the relations (3.20) and (3.19) then imply @ = 0 which is a contradic-
tion.

The same proof works in the case when [A{| =1 and ¢; := (c);i:_l1 is not
an eigenvector of J;'. Thus it remains to consider the case when |\;| = 1
and J7'e; = (1/A\1) e;. Since then 0 < const; < ||PJ % ¢l|o < consts,
for all k, the normalized boundary condition (3.16) becomes

[A1 Blu+ ¢ [A1 B]z =0,
where 4 is a generalized eigenvector corresponding to A; and
o =co/||PJ ™ €||so-
This relation, (3.19), and the fact that [A; B] z = e; imply
(3.21) (C+M(A—A))u; = A Ge.

Thus u; = —(\1/a) ¢ eq which leads either to @ = 0 or contradicts (3.20)
and the proof of the first case is complete.

Suppose d < i < 2d — 2. The power method now assures that, as ms tends

to infinity,
1

||1PJ™2 € |00
converges to a generalized eigenvector corresponding to As. The normal-
ized boundary condition (3.17) becomes
1
||1PJ™2 €| oo

PJ™e

[C AQ] ym2 = [O AQ]"E +Eoo w + O(l/Tng) =0.

We use very similar arguments as in the first case. If |A2| # 1, the relation
(3.22) [C Ao =0

must hold. Since now (N — As M)v = 0, we have

(323) (C+A2A+>\§B)'l)1 :0, 'U2:A2'Ul, v = |: :1 :| s
2

and the relation (3.22) imply

(324) (A — A2 + )\2 B)’Ul =0.

Let T(\) := A — A + AB and Ty_1()) denote the first d — 1 columns of
T'(X). Suppose e is a vector of ones.

LEMMA 3.7. If T(\) = [Tq—1(\) €], then

- det V(0,t1,t2, ..., tn, 1
det T(n) = 2V L X\ —ay.
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PROOF. The proof of this lemma is almost the same as the proof of lemma
3.2 and will be omitted. O

Observe that the last column of T'(A) is zero for all A, and recall that
A2 # 0,a. The conclusion that T'(A2) has rank d — 1 now follows directly
from the previous lemma. Thus T'()\2) has one dimensional kernel spanned
by e4. The only solutions of (3.24) are in Lin{eq}, which leads to vy = 0 or
v, = const eg. The first solution produces an obvious contradiction v = 0
and the second one fails to satisfy (3.23).
If [A2] = 1, and e; := (¢)?%,? is not an eigenvector of Jo, the conclusion
(3.24) is still true. Suppose that |A2| = 1 and Jrex = Aaea. If (3.17)
is normalized by ||P J™? ¢||c0, Which is bounded now, and the relations
(3.23) and [C A3]w = e are used, the relation
(3.25) (A= Ay + X\ B)vy = ‘;ﬁ e,

2
where Coo = Coo/||P J™ €||0, 18 obtained. Since by lemma 3.7 vector e is
not in the image of T'(A2), (3.25) has a solution only if ¢, =0, i.e., (3.24)
must hold and a contradiction follows by previous conclusions.

In all cases ¢ = 0, thus ¢p and ¢y must be zero too. This implies regularity
of J,, for my and ms large enough (i.e. m large enough) and the proof of the
theorem 3.4 is complete. O

For the approximation order it is enough to look the error on the /-th segment
independently, i.e., dist(B*, f). By (1.6) and (2.5) the tangent directions of
B' at the boundary points are O(h) approximations of the tangent directions
of f, which is easily obtained by straightforward computations. Consequently,
there exists a smooth curve f with positive first d—1 principal curvatures, which
interpolates the given data points on the ¢-th segment and the tangent directions
of B at the boundary points. Additionally, it can be chosen in such a way that
it interpolates f at additional two points on the ¢-th segment too. Then

dist(B', f) < dist(B’, f) + dist(f, f) = O(h™+*) + O(h™*1),

where the first part follows from the single segment case analysis in [7], and the
second by the construction of }

By theorem 3.4 the Jacobian of the nonlinear system (3.5) is nonsingular at the
limit solution from lemma 3.1. The implicit function theorem now asserts, that
the system (3.5) has a solution in the neighborhood of that limit solution, i.e.,
for h small enough, or equivalently, m large enough. This finally proves the
results stated in the theorem 1.1.

4 Numerical example.

A numerical example will be given here to confirm the results obtained in
the previous sections. Since the results for the curves in R® have already been
presented in [5] we shall consider the curve in R*.
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Let the curve be given by

CcosT
sinT
In(2+7)
In(1+7)

F:0,10] = R* : 7 f(7) :=

It can be verified that the first three curvatures of f are positive on [0, 10]
and the curve satisfies our requirements. The interpolation points have been
chosen on the curve at the equidistant values of the parameter 7. It is not a
regular sampling in the sense of the theorem 1.1 but we still got a solution of the
problem. This indicates that the regularity of data points could be omitted in
the theorem. This fact has been confirmed by other examples too. The detailed
numerical algorithm for solving the obtained nonlinear system together with the
numerical results will appear elsewhere.

2.5e-4 |
2e-4 ¢
1.5e-4 |

le-4 |

5e-5

2 4 6 8 10

Figure 4.1: The estimated parametric error for the curve f and m = 6.

Table 4.1: The results for the curve f.

m Error Rate || m Error Rate
6 [290x10~*] — [[16]1.38%x107% | 5.67
8 [6.32%107° | 5.30 || 18 | 7.07%10~7 | 5.70
10 | 1.89%10°° | 5.41 || 20 | 3.87% 107 | 5.71
121 6.91%107% | 5.51 || 22| 2.24%10~7 | 5.73
14 12.92%107% | 558 || 24 | 1.36«10~7 | 5.75

The parametric distance (i.e. the error) between f and B was obtained by the
method described in [2] and already used in [3]. The results of the interpolation
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are shown in Tab. 4.1. The first column is the number of segments of the
spline curve, the second one the estimated error, and the third one the rate of
convergence obtained from two consecutive m. Since in this case r =d —2 = 2,
the approximation order should be r+4 = 6, which is obviously confirmed by the
results in the table. Fig. 4.1 shows the estimated parametric error for m = 6. It
can be clearly seen that four points are interpolated on each segment implying
the error being zero there.

10.
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