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 Swets & Zeitlinger
ON G2 CONTINUOUS SPLINE INTERPOLATIONOF CURVES IN RdEMIL �ZAGARFa
ulty of Computer and Information S
ien
e, University of Ljubljana, Tr�za�ska 251000 Ljubljana, Slovenia. email: emil�gollum.fri.uni-lj.siAbstra
t.In this paper the problem of G2 
ontinuous interpolation of 
urves in Rd by poly-nomial splines of degree n is studied. The interpolation of the data points, and twotangent dire
tions at the boundary is 
onsidered. The 
ase n = r + 2 = d, where ris the number of interior points interpolated by ea
h segment of the spline 
urve, isstudied in detail. It is shown that the problem is uniquely solvable asymptoti
ally, i.e.,when the data points are sampled regularly and suÆ
iently dense, and lie on a regular,
onvex parametri
 
urve in Rd . In this 
ase the optimal approximation order is alsodetermined.AMS subje
t 
lassi�
ation: 65D05, 65D07.Key words: Spline 
urve, G2 
ontinuity, interpolation, approximation order.1 Introdu
tion.The problem of parametri
 polynomial interpolation of data points in Rd hasalready been studied in [1℄{[5℄, [7℄, [9℄ and [10℄. Perhaps [1℄ gave the �rst impe-tus to this subje
t. In [9℄, a ni
e general approa
h of in
reasing the approxima-tion order by parametri
 polynomial interpolation methods has been developed.Here, we apply this general approa
h to the G2 
ontinuous spline 
ase.The geometri
 
ontinuity is usually 
hosen in geometri
 design, sin
e it refersto a parti
ular parametrisation, and assures that the geometri
 invariants of the
urve, i.e., the tangent dire
tion, the 
urvature, et
., are 
ontinuous, but re-moves the in
uen
e of the parametrisation on the shape of the 
urve. Of 
ourse,it is usually suÆ
ient to require G2 
ontinuity, sin
e it is almost impossible tore
ognize the dis
ontinuities of the higher order derivatives by the human eye.The problem in its general form has already been 
onsidered in [5℄ and [7℄, and
an be stated as follows. LetBBBBBBBBB := BBBBBBBBBn : [�0; �m℄! Rd(1.1)be the polynomial spline 
urve of degree n 
omposed by m segments with break-point sequen
e �0 < �1 < : : : < �m:



2 E. �ZAGARSuppose pointsTTTTTTTTT 0; TTTTTTTTT 1; : : : ; TTTTTTTTTN 2 Rd ; TTTTTTTTT j 6= TTTTTTTTT j+1; j = 0; 1; : : : ; N � 1;(1.2)and tangent dire
tions ddddddddd0; dddddddddN ;(1.3)at the boundary points TTTTTTTTT 0 and TTTTTTTTTN are given. Find a polynomial spline BBBBBBBBBde�ned by (1.1) whi
h isG2 
ontinuous and interpolates given points and tangentdire
tions.Lo
ally, on the `-th segment, BBBBBBBBB 
an be given asBBBBBBBBB(�) =: BBBBBBBBB`�� � �`�1��`�1 � ; � 2 [�`�1; �`℄; ` = 1; : : : ;m;(1.4)where ��`�1 := �`��`�1. Sin
e BBBBBBBBB has to interpolate the data (1.2) and (1.3), its`-th polynomial pie
e BBBBBBBBB` should interpolate r interior and two boundary points.The interpolating 
onditions on the `-th segment now readBBBBBBBBB`(t`;j) = TTTTTTTTT (r+1)(`�1)+j =: TTTTTTTTT `;j ; j = 0; 1; : : : ; r + 1;(1.5)where t`;0 := 0 < t`;1 < � � � < t`;r < t`;r+1 := 1;and (t`;j)rj=1 are unknown parameter values whi
h have to be determined. Itremains to ful�l the G 
ontinuity 
onditions. The G1 
ontinuity 
an be writtenin the lo
al parametrisation, i.e., t`, 0 � t` � 1, asddt1BBBBBBBBB1(0) = �0 ddddddddd0;ddt`+1BBBBBBBBB`+1(0) = �` ddt`BBBBBBBBB`(1); ` = 1; 2; : : : ;m� 1;(1.6) ddtmBBBBBBBBBm(1) = �m dddddddddN ;and the G2 
ontinuity relations readd2dt2̀+1BBBBBBBBB`+1(0) = �2̀ d2dt2̀BBBBBBBBB`(1) + �` ddt`BBBBBBBBB`(1); ` = 1; : : : ;m� 1;(1.7)where �` and �` are unknowns and �` > 0. Fig. 1.1 shows a parti
ular polyno-mial pie
e BBBBBBBBB` that joins its neighbors.As already observed in [5℄, the assumption that the number of independent equa-tions should be equal to the number of unknowns implies the following relationd n� (d� 1) r = 3 d� 2:(1.8)This leads to two pra
ti
ally important 
ases, n = r + 2 = d and n = r + 1 =2 d� 1, i.e., the interpolation by polynomial splines of low degree.
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Figure 1.1: A parti
ular segment of the spline 
urve and some of the importantquantities.The parti
ular 
ase d = 3 was asymptoti
ally (i.e. for the data sampled ona regular 
urve dense enough) solved in [5℄. Its extension to general d, but forsegments only, 
an be found in [7℄. Here we ta
kle the 
omposite 
ase. For these
ond 
ase, i.e., n = r + 1 = 2 d� 1, the approa
h explained here fails and willrequire some additional resear
h.The main result of the paper 
an be stated as follows.Theorem 1.1. If the data points are sampled regularly and suÆ
iently dense,then there exists a G2 polynomial spline 
urve BBBBBBBBB, whi
h interpolates given datapoints and tangent dire
tions at the boundary. The approximation order is opti-mal, i.e., r + 4 = n+ 2.The regularity of data point mentioned in the above theorem should be ex-plained. It is 
lear that the solution depends on the stru
ture of the data and we
an not expe
t that the problem will be solvable for the arbitrary set of points.Sin
e the asymptoti
 analysis will be done, the data points will be 
onsideredas points on a smooth 
urve. They will be sampled regularly in the sense thatthe distribution of points a

ording to the ar
 length remains the same for allsegments. And suÆ
iently dense means that the neighboring points are 
loseenough to ea
h other.It is also 
lear that the approximation order is optimal sin
e we have r + 4interpolation 
onditions on ea
h segment (r + 2 interpolated points and two
onditions for two joining segments 
on
erning G1 and G2 
ontinuity, i.e., one



4 E. �ZAGAR
ondition for ea
h segment at the breakpoint).2 The system of nonlinear equations for n = r + 2 = d.In this se
tion, the system of nonlinear equations (1.5){(1.7) will be trans-formed further for this parti
ular 
ase. Sin
e n = r + 2, the polynomial 
urveBBBBBBBBB`(t) := bbbbbbbbb` !`(t) + r+1Xj=0L`;j(t)TTTTTTTTT `;j(2.1)will satisfy the interpolation 
onditions (1.5) on [�`�1; �`℄. Here!`(t) := r+1Yj=0(t� t`;j); L`;j(t) = !`(t)(t� t`;j) _!`(t`;j) ; _!` := ddt`!`:Provided t`;j are known, the unknown leading 
oeÆ
ient ve
tor bbbbbbbbb` 
an be ex-pressed in two di�erent waysbbbbbbbbb` = [t`;0; t`;0; t`;1; : : : ; t`;r; t`;r+1℄BBBBBBBBB`= [t`;0; t`;1; : : : ; t`;r; t`;r+1; t`;r+1℄BBBBBBBBB`:(2.2)Sin
e t`;0 = 0, t`;r+1 = 1, and for a smooth f[x0; x0; x1; : : : ; xi℄f = iXj=0 1_!(xj) [x0; xj ℄f;(2.3)the equation (2.2) 
an be rewritten asbbbbbbbbb` = 1_!`(0) _BBBBBBBBB`(0) + r+1Xj=1 1_!`(t`;j)t`;j (TTTTTTTTT `;j � TTTTTTTTT `;0)= 1_!`(1) _BBBBBBBBB`(1) + rXj=0 1_!`(t`;j)(t`;j � 1)(TTTTTTTTT `;j � TTTTTTTTT `;r+1):(2.4)Inserting (2.1) into (1.7) and using (2.4), (1.6) in order to repla
e bbbbbbbbb`, bbbbbbbbb`+1 by_BBBBBBBBB`(1), one 
on
ludes that_BBBBBBBBB`(1) = 
` 0��2̀0� rXj=0 �!`(1)_!`(t`;j)(t`;j � 1)(TTTTTTTTT `;j � TTTTTTTTT `;r+1) + r+1Xj=0 �L`;j(1)TTTTTTTTT `;j1A� 0�r+1Xj=1 �!`+1(0)_!`+1(t`+1;j) t`+1;j (TTTTTTTTT `+1;j � TTTTTTTTT `+1;0) + r+1Xj=0 �L`+1;j(0)TTTTTTTTT `+1;j1A1A:(2.5)Here 
` = � �!`+1(0)_!`+1(0) �` � �!`(1)_!`(1) �2̀ � �`��1 :



INTERPOLATION OF CURVES 5If we writeGGGGGGGGG0̀ = r+1Xj=1 �!`+1(0)_!`+1(t`+1;j) t`+1;j (TTTTTTTTT `+1;j � TTTTTTTTT `+1;0) + r+1Xj=0 �L`+1;j(0)TTTTTTTTT `+1;j ;GGGGGGGGG1̀ = rXj=0 �!`(1)_!`(t`;j)(t`;j � 1)(TTTTTTTTT `;j � TTTTTTTTT `;r+1) + r+1Xj=0 �L`;j(1)TTTTTTTTT `;j ;andHHHHHHHHH` = rXj=0 1_!`(t`;j) (t`;j � 1)(TTTTTTTTT `;j � TTTTTTTTT `;r+1)� r+1Xj=1 1_!`(t`;j) t`;j (TTTTTTTTT `;j � TTTTTTTTT `;0);then relation (1.6) leads by of (2.4), (2.5) to the following system of nonlinearequationsFFFFFFFFF 1 := 
1_!1(1) (�21GGGGGGGGG11 �GGGGGGGGG10) +HHHHHHHHH1 � �0_!1(0)ddddddddd0 = 000000000;FFFFFFFFF ` := 
`_!`(1) (�2̀GGGGGGGGG1̀ �GGGGGGGGG0̀) +HHHHHHHHH`� �`�1
`�1_!`(0) (�2̀�1GGGGGGGGG`�11 �GGGGGGGGG`�10 ); ` = 2; 3; : : : ;m� 1;(2.6) FFFFFFFFFm := �m_!m(1)dddddddddN +HHHHHHHHHm � �m�1
m�1_!m(0) (�2m�1GGGGGGGGGm�11 �GGGGGGGGGm�10 ):Note that the equations for the �rst and for the last segment are di�erent sin
eddddddddd0 and dddddddddN are given. Thus one has md nonlinear equations for md s
alarunknowns (t`;j)m; r`=1; j=1; (�`)m̀=0; (
`)m�1`=1 :The best way to ta
kle su
h systems of nonlinear equations turned out to be thehomotopy 
ontinuation methods, as was reported in [3℄{[5℄.3 Asymptoti
 analysis.Sin
e the system of nonlinear equations obtained in the previous se
tion isdiÆ
ult to analyze in full generality, the asymptoti
 analysis will be appliedhere. Under 
ertain 
onditions the existen
e of the unique asymptoti
 solutionof the system (2.6) will be proved. This will be done in the following way. First,the solution at the limit point will be found. Then the regularity of the Ja
obianmatrix of the analyzed system at the limit point will be proven. Sin
e it is verydiÆ
ult to do it in the general 
ase, the regular distribution of the data points(i.e. the distribution of the parameter values at whi
h the underlying 
urvemat
h the data in the ar
 length parametrisation is equal for all the segments)will be required, whi
h assures the Ja
obian being the Toeplitz-like matrix. Itmakes it easier to analyze, sin
e one 
an apply the general theory of systems ofdi�eren
e equations. After that the impli
it fun
tion theorem will be used toestablish the existen
e of the solution in the neighborhood of the limit solution.



6 E. �ZAGARSuppose that the data (1.2) and (1.3) are based upon a smooth regular para-metri
 
urve fffffffff : [0; L℄ ! Rd , parametrized by the ar
 length parameter. Obvi-ously, (2.6) involves data and unknowns from three 
onse
utive segments only.Let us re
all the fa
t, observed in [3℄, that ea
h blo
k of equations 
an be simpli-�ed by some translation and rotation. So fffffffff 
an be, without loosing generality,lo
ally parametrized by the ar
 length parameter s asfffffffff `(s); s 2 [�h`�1; h` + h`+1℄;(3.1)with h` := Æ` h and bounded global mesh ratio 0 < Æ0 � Æ` � 1, wherefffffffff`(0) = TTTTTTTTT `;0 := 000000000; ddsfffffffff `(0) = eeeeeeeee1:Here eeeeeeeeei is the unit ve
tor, i.e.,eeeeeeeeei(0) := [0; 0; : : : ; 0| {z }i�1 ; 1; 0; : : : ; 0| {z }d�i ℄T :The domain of the de�nition of the ar
 length parameter s in (3.1) was 
hosento assure that the origin of the lo
al 
oordinate system is in TTTTTTTTT `;0 at s = 0, ands runs over the three neighboring segments of the underlying 
urve fffffffff whi
h areinvolved in the parti
ular set of equations whi
h has to be analyzed.If the �ì , i = 1; 2; : : : ; d � 1, are the �rst d � 1 prin
ipal 
urvatures of fffffffff `,expanded lo
ally as �ì(s) = �ì;0 + 11!�ì;1 s+ 12!�ì;2 s2 + : : : ;and fffffffff ` is a regular 
urve in the sense thatddsfffffffff `; : : : ; dd�1dsd�1 fffffffff `are linearly independent ve
tors in Rd , then�ì;0 � 
onst > 0; i = 1; 2; : : : ; d� 2:Additionally, we shall assume that �d̀�1;0 � 
onst > 0. With the aid of theFrenet-Serret formulae and the expansion of the prin
ipal 
urvatures, one obtainsthe lo
al expansionfffffffff `(s) = fffffffff `(0) + ddsfffffffff `(0) s+ 12! d2ds2 fffffffff `(0) s2 + � � �= fffffffff `(0) + (s� 16(�1̀;0)2 s3 + � � �) eeeeeeeee1(3.2) + (12�1̀;0 s2 + 16�1̀;1 s3 + � � �) eeeeeeeee2 + (16�1̀;0 �2̀;0 s3 + � � �) eeeeeeeee3 + � � �



INTERPOLATION OF CURVES 7Using (3.1), the data points 
an be written asTTTTTTTTT `�1;j = fffffffff `(h`�1 (�`�1;j � 1));TTTTTTTTT `;j = fffffffff `(h` �`;j);(3.3) TTTTTTTTT `+1;j = fffffffff `(h` + h`+1 �`+1;j);where �`;0 := 0 < �`;1 < � � � < �`;r < �`;r+1 := 1, ` = 1; 2; : : : ;m, are givenparameter values. The expansion (3.2) and the equations (3.3) �nally giveTTTTTTTTT `;j = "hi Æì �ì;j 1i! i�1Yq=1 �q̀;0 +O(hi+1)#di=1 :(3.4)Applying these expansions to the equations (2.6) and multiplying them by D�1` ,where D` = diag h; 12! h2 1Yq=1�q̀;0; : : : ; 1d! hd d�1Yq=1 �q̀;0! ;the normalized system of nonlinear equations readseFFFFFFFFF ` := D�1` FFFFFFFFF ` = 000000000; ` = 1; 2; : : : ;m:(3.5)Let eTTTTTTTTT `�1;j := D�1` TTTTTTTTT `�1;j = [ Æì�1 (�`�1;j � 1)i ℄di=1 +O(h);eTTTTTTTTT `;j := D�1` TTTTTTTTT `;j = [ Æì �ì;j ℄di=1 +O(h);(3.6) eTTTTTTTTT `+1;j := D�1` TTTTTTTTT `+1;j = [ (Æ` + Æ`+1 �`+1;j)i ℄di=1 +O(h);and e�0 := �0h ; e�m := �mh :The limit solution of the normalized system is given by the following lemma.Lemma 3.1. As h! 0, the solution of the system (3.5) ise��0 = Æ1��̀ = Æ`+1Æ` ; ` = 1; 2; : : : ;m� 1e��m = Æm(3.7) t�̀;j = �`;j ; ` = 1; 2; : : : ;m; j = 1; 2; : : : ; r:
�̀ = �Æ`+1Æ` �!�̀+1(0)_!�̀+1(0) � Æ2̀+1Æ2̀ �!�̀(1)_!�̀(1)��1 ; ` = 1; 2; : : : ;m� 1;where !�̀(t) = r+1Yj=0(t� t�̀;j):



8 E. �ZAGARProof. The proof is rather te
hni
al and some details will be omitted. Thelimit behavior of the relation (3.5) as h ! 0 has to be shown. Sin
e all the
al
ulations are similar, we will, e.g., show howlimh!0D�1` GGGGGGGGG`�10 = r+1Xj=1 �!�̀(0)_!�̀(t�̀;j) t�̀;j limh!0(eTTTTTTTTT `;j � eTTTTTTTTT `;0) + r+1Xj=0 �L�̀;j(0) limh!0 eTTTTTTTTT `;j ;(3.8)
an be simpli�ed to 2 Æ2̀ eeeeeeeee2 � �!�̀(0)_!�̀(0)Æ`eeeeeeeee1:Here L�̀;j(t) = !�̀(t)(t� t�̀;j) _!�̀(t�̀;j) :Re
all that (3.8) is a part of the nonlinear equation eFFFFFFFFF ` = 000000000 
onsidered at thelimit point.For the �rst part of expression (3.8), the relation (3.6) and well-known propertiesof the divided di�eren
es are used, whi
h givesr+1Xj=1 �!�̀(0)_!�̀(t�̀;j) t�̀;j limh!0(eTTTTTTTTT `;j � eTTTTTTTTT `;0) = �!�̀(0) r+1Xj=1 1_!�̀(t�̀;j) [ Æì t�̀;j i�1 ℄di=1= �!�̀(0)[t�̀;0; t�̀;1; : : : ; t�̀;r+1℄[ Æì ���������i�1 ℄di=1 � �!�̀(0)_!�̀(0) [Æì t�̀;0i�1℄di=1= �!�̀(0) Æd̀ eeeeeeeeed � �!�̀(0)_!�̀(0) Æ` eeeeeeeee1:For the se
ond part re
all also the identitiestq = r+1Xj=0 t�̀;jqL�̀;j(t); q = 0; 1; : : : ; r + 1;and tr+2 = !�̀(t) + r+1Xj=0 t�̀;jr+2L�̀;j(t);whi
h are applied to obtainr+1Xj=0 �eL�̀;j(0) limh!0 eTTTTTTTTT `;j = 2 Æ2̀ eeeeeeeee2 � Æd̀ �!�̀(0) eeeeeeeeed:Similarly the other terms of (3.5) are handled and it is easy to show that theysum to zero whi
h 
ompletes the proof of the lemma.It remains to prove the regularity of the Ja
obian of the nonlinear system(3.5) at the limit solution. To simplify the 
al
ulation of the partial derivatives,



INTERPOLATION OF CURVES 9it is more 
onvenient to reverse the role of the unknowns and the parameters,as in [9℄. The impli
it fun
tion theorem 
an then be applied at the end to
omplete the proof. So let us assume for a while that ttttttttt` = (t`;j)m;r`=1;j=1 are givenparameters, and ���������` = (�`;j)m;r`=1;j=1 are the unknowns. Expli
it 
omputation ofthe Ja
obian requires a parti
ular ordering of the unknowns. The following onewill be 
onsidered:e�0; ���������1; 
1; �1; ���������2; 
2 : : : ; 
m�1; �m�1; ���������m; e�m:This ordering and the fa
t that there are only three neighboring segments in-volved in the parti
ular set of equations of the nonlinear system (3.5), imply thatthe Ja
obian is a blo
k tridiagonal matrix. But the study of its regularity is stillvery diÆ
ult, and some further assumptions are needed. Suppose that the datapoints are regularly sampled. It means that the lengths of the segments of the
urve fffffffff are all equal, i.e, Æ` = 1 for all `, and the 
omponents of the ve
tor ttttttttt`(whi
h are parameters now) are equally distributed on ea
h segment, i.e.,tj := t`;j ; ` = 1; 2; : : : ;m; j = 0; 1; : : : ; r + 1:The limit solution from lemma 3.1 then be
omese��0 = ��̀ = e��m = 1; ` = 1; 2; : : : ;m� 1;��̀;j = tj ; ` = 1; 2; : : : ;m; j = 1; 2; : : : ; r;(3.9) 
�̀ = 
� = � �!(0)_!(0) � �!(1)_!(1)��1 ; !(t) = r+1Yj=0(t� tj);and the Ja
obian, say Jm, is a blo
k tridiagonal Toeplitz-like matrix. Thisproperty will be used to prove the regularity of Jm at least for m large enoughwhi
h will imply the theorem 1.1 stated in the introdu
tion.What follows now is the te
hni
al part of the proof of the theorem.First the Ja
obian Jm of the system at the limit point will be derived. If thenotation a := _!(1)= _!(0), b := �!(1)= _!(1), 
 := 2 
�, and uj = tj=(tj � 1) is used,the 
olumns of Jm arising from the `-th segment (1 < ` < m) of the normalizedsystem (3.5) and 
omputed at the limit (3.9), are���`�1;j eFFFFFFFFF ` = a 
(tj � 1)2 _!(tj) [ i (tj � 1)i�1 ℄di=1;��
`�1 eFFFFFFFFF ` = � 2_!(0) 
 [1; 0; : : : ; 0℄T ;���`�1 eFFFFFFFFF ` = � 1_!(0) [1� b 
; 2 
; 0; : : : ; 0℄T ;���`;j eFFFFFFFFF ` = 1� 
 (uj + 1=uj)tj (tj � 1) _!(tj) [ i ti�1j ℄di=1;��
` eFFFFFFFFF ` = 2
 _!(1) [ i ℄di=1;



10 E. �ZAGAR���` eFFFFFFFFF ` = 
_!(1) [ i (i� 1� b) ℄di=1;���`+1;j eFFFFFFFFF ` = 
a t2j _!(tj) [ i (tj + 1)i�1 ℄di=1:Other unknowns are not involved in the equations for the `-th segment and the
orresponding partial derivatives are zero. Similarly the 
olumns of the �rstand the last diagonal blo
ks are derived. Multipli
ation of the obtained matrixby L = diag(L1; L2; : : : ; Lm), where Li = diag(1; 1=2; : : : ; 1=d), i = 1; 2; : : : ;m,from the left, and by R = diag(R1; R2; : : : ; Rm),R1 = diag(� _!(0); vvvvvvvvvT ; _!(1) 
=2);Rj = diag(� _!(0)=
; vvvvvvvvvT ; _!(1) 
=2); j = 2; 3; : : : ;m� 1;Rm = diag(� _!(0)=
; vvvvvvvvvT ; _!(1));where vvvvvvvvv = [ tj (tj � 1) _!(tj)=
 ℄rj=1, from the right, produ
es the matri
es A1, A,B, C and A2,A1 = 26664 1 (1=
� u1) t01 � � � (1=
� ur) t0r 10 (1=
� u1) t11 � � � (1=
� ur) t1r 1... ... ... ... ...0 (1=
� u1) td�11 � � � (1=
� ur) td�1r 1 37775 ;A = 2666664 1=
� b a11 a12 � � � a1r 11 a21 a22 � � � a2r 10 a31 a32 � � � a3r 1... ... ...0 ad1 ad2 � � � adr 1
3777775 ;where akj := (1=
� uj � 1=uj) tk�1j ,B = 26664 b=a (t1 + 1)0=(a u1) � � � (tr + 1)0=(a ur) 0�(1� b)=a (t1 + 1)1=(a u1) � � � (tr + 1)1=(a ur) 0... ... ... ... ...�(d� 1� b)=a (t1 + 1)d�1=(a u1) � � � (tr + 1)d�1=(a ur) 0 37775 ;C = 26664 0 a u1 (t1 � 1)0 � � � a ur (tr � 1)0 �a0 a u1 (t1 � 1)1 � � � a ur (tr � 1)1 0... ... ... ... ...0 a u1 (t1 � 1)d�1 � � � a ur (tr � 1)d�1 0 37775 ;and A2 = 2666664 (1=
� b) (1=
� 1=u1) t01 � � � (1=
� 1=ur) t0r 11 (1=
� 1=u1) t11 � � � (1=
� 1=ur) t1r 10 (1=
� 1=u1) t21 � � � (1=
� 1=ur) t2r 1... ... ... ... ...0 (1=
� 1=u1) td�11 � � � (1=
� 1=ur) td�1r 1

3777775 :



INTERPOLATION OF CURVES 11Note that all these matri
es are quadrati
 sin
e d = r + 2.The transformed Ja
obian, say eJm, now be
omes
eJm := LJmR = 26666666666664

A1 B 0 0 � � � � � � 0C A B 0 � � � � � � 00 C A . . . . . . � � � 00 0 . . . . . . . . . . . . ...... ... . . . . . . A B 0... ... ... . . . C A B0 0 0 � � � 0 C A2
37777777777775 :(3.10)

Observe that the �rst and the last diagonal blo
ks are di�erent from the others,sin
e the tangent dire
tions at the boundary are given. This is why the obtainedmatrix is blo
k Toeplitz-like and not exa
tly blo
k Toeplitz.Matri
es L and R are obviously invertible. Consequently, Jm is invertible ifeJm = LJmR is. It will be shown that eJm is invertible for m large enough. Thefa
t that the matrix is blo
k Toeplitz-like will be used. In this 
ase the problem ofthe non-singularity of the matrix is 
losely 
onne
ted with a parti
ular systemof di�eren
e equations. The solutions of this system depend mainly on thestru
ture of the polynomial�(�) = det(C + �A+ �2B); � 2 C ;and the following lemma will be proved �rst.Lemma 3.2. The determinant � is expli
itly�(�) = detV (0; t1; : : : ; tr; 1)��2(�)r+1;where �2(�) = 1a �2 +�1
 � 2� �+ a;and V (0; t1; : : : ; tr; 1) is the Vandermonde matrix.Proof. LetP := (C + �A+ �2 B) diag(1; t1 (t1 � 1); : : : ; tr (tr � 1); 1)= 2666664 � (1=
� b) + �2 b=a p11 � � � p1r �� a�� �2 (1� b)=a p21 � � � p2r ���2 (2� b)=a p31 � � � p3r �... ... ... ... ...��2 (d� 1� b)=a pd1 � � � pdr �
3777775 ;where pkj := a t2j (tj � 1)k�1 + � (tj (tj � 1)=
� t2j � (tj � 1)2) tk�1j ++ �2(tj � 1)2 (tj + 1)k�1=a:



12 E. �ZAGARThe approa
h based upon [8℄ will be used now. By the de�nition of the determi-nant, detP is a polynomial in variables t1; t2; : : : ; tr. A brief look at the entriesof the matrix P reveals that the total degree of its determinant is at mostdXk=3(k + 1) = r2 + 7r2 :(3.11)So, if all the zeros are guessed, one has to �nd the leading 
oeÆ
ient only. Notethat (pkj)dk=1��tj = 0 = �a (�� a; �; : : : ; �)T ;(pkj)dk=1��tj = 1 = �(�� a; �; : : : ; �)Tare both proportional to the last 
olumn of P . Also, only one 
olumn of Pdepends on �xed tj , and��tj (pkj)dk=1��tj = 0 = ��2a h2 a� � a� 
 � 2;�a� � 1; 0; 1; 2; : : : ; d� 3iT ;��tj (pkj)dk=1��tj = 1 = [2 a; a� �;�2�;�3�; : : : ; (�d+ 1)�℄T+ � �1
 � 2� [1; 1; : : : ; 1℄T ;and again the �rst, the (j + 1)-th , and the last 
olumn are linearly dependent.Thus detP vanishes twofold at tj = 0; 1. Sin
e it vanishes also for tj = tj0 ,j 6= j0, detP = g rYj=1 t2j (tj � 1)2 Y1�j<k�r(tk � tj);(3.12)with g possibly depending only on other parameters, but not on t1; t2 : : : ; tr,sin
e the rest of the produ
t is already of total degree4r +�r2� = r2 + 7r2 ;whi
h equals (3.11). Even more, g must equal (for example) the 
oeÆ
ient of theterm t41 t52 � � � td+1r in detP . Sin
e this term is involved in the 
onsidered deter-minant only twi
e, namely in p10 p2;r+1Qr+2j=3 pj;j�2 and p20 p1;r+1Qr+2j=3 pj;j�2,an easy 
omputation gives the desired 
oeÆ
ientg = f(�1)r (� (1=
� b) + �2 b=a)�+ (�1)r+1 (�� �2 (1� b)=a) (�� a)g� r+2Yj=3(�2=a+ � (1=
� 2) + a) = (�1)r � (�2=a+ � (1=
� 2) + a)r+1:



INTERPOLATION OF CURVES 13The result of the lemma follows after (3.12) is divided by Qrj=1 tj (tj � 1).Sin
e the roots of � will be of parti
ular interest, the following observationwill be useful.Lemma 3.3. There exist only three distin
t real roots of �, namely �0 = 0,�1 and �2. Moreover, �1; �2 6= a and one of the roots, say �2, is dominant, i.e.,j�1j < j�2j.Proof. By lemma 3.2, the roots of � 
onsists of �0 = 0 and the roots of �2.Sin
e �2 is quadrati
 polynomial and (1=
� 2)2� 4 > 0 (be
ause 
 < 0), �1 and�2 are real and distin
t. The relation �1 �2 = a2 > 0 then implies that �1 and�2 have the same sign and none of them equals a. Consequently j�1j 6= j�2j.These fa
ts will be used to prove the following theorem.Theorem 3.4. If m is large enough, then the matrix Jm is nonsingular.Proof. It is by (3.10) enough to show that eJm is nonsingular ifm is suÆ
ientlylarge. Suppose that there is xxxxxxxxx 2 Rd and eJm xxxxxxxxx = 000000000. It will be shown that xxxxxxxxx = 000000000if m is large enough. Let us rewrite the equation eJm xxxxxxxxx = 000000000 in the blo
k formeJm 2666664 xxxxxxxxx�m1xxxxxxxxx�m1+1...xxxxxxxxxm2xxxxxxxxxm2+1
3777775 = 000000000; xxxxxxxxx` 2 Rd ; ` = �m1;�m1 + 1; : : : ;m2 + 1;(3.13)where m1+m2 = m�2 and m > 2. Sin
e eJm is given by (3.10), equation (3.13)is equivalent to the following system of di�eren
e equationsA1xxxxxxxxx�m1 +Bxxxxxxxxx�m1+1 = 000000000Cxxxxxxxxx`�1 +Axxxxxxxxx` +Bxxxxxxxxx`+1 = 000000000; ` = �m1 + 1; : : : ;m2(3.14) Cxxxxxxxxxm2 +A2xxxxxxxxxm2+1 = 000000000:In order to apply the general theory of di�eren
e equations ([6℄, p. 181{227),the system (3.14) will be �rst transformed to the system of di�eren
e equationsof the �rst order. Letyyyyyyyyy` = � xxxxxxxxx`xxxxxxxxx`+1 � ; ` = �m1;�m1 + 1; : : : ;m2:Now (3.14) is equivalent toM yyyyyyyyy`+1 = N yyyyyyyyy`; ` = �m1;�m1 + 1; : : : ;m2 � 1;(3.15)where M = � I 00 B � and N = � 0 I�C �A � ;with I the identity in Rd�d , and the boundary 
onditions[A1 B℄ yyyyyyyyy�m1 = 000000000;(3.16) [C A2℄ yyyyyyyyym2 = 000000000:(3.17)



14 E. �ZAGARLemma 3.5. Let �(�) := det(N � �M). Then � has three real roots, �0 = 0,�1 and �2 of multipli
ity 1, r+1 and r+1 respe
tively. The general solution of(3.15) is yyyyyyyyy�m1 = PJ�m1








+ 
0eeeeeeeee1;yyyyyyyyy` = PJ`








; ` = �m1 + 1;�m1 + 2; : : : ;m2 � 1;yyyyyyyyym2 = PJm2








+ 
1eeeeeeeee2d;where P = [P1 P2℄ is the matrix of generalized eigenve
tors and prin
ipal ve
torsof the matrix pen
il N � �M 
orresponding to �1 and �2, J = diag(J1; J2) isthe 
orresponding blo
k Jordan matrix and [
0; 








T ; 
1℄T 2 R2d is a ve
tor ofarbitrary 
onstants.Proof. It is easy to verify thatdet(N � �M) = det(C + �A+ �2B) = �(�):By lemma 3.2, � has three roots, �0 = 0, �1 and �2 of multipli
ity 1, r + 1 andr + 1 respe
tively. Sin
e the degree of � is 2r + 3 = 2d� 1 < 2d, it has exa
tlyone root at in�nity, say �1.To �nd a general solution of (3.15), one has to 
onstru
t the 
anoni
al forms ofN ��iM , i = 0; 1; 2 and �0N �M . It is then well known ([6℄, p. 225{227) thatthe general solution of (3.15) isyyyyyyyyy�m1 = PJ�m1








+ 
0zzzzzzzzz;yyyyyyyyy` = PJ`








; ` = �m1 + 1;�m1 + 2; : : : ;m2 � 1;yyyyyyyyym2 = PJm2








+ 
1wwwwwwwww;where P = [P1 P2℄ is the matrix of generalized eigenve
tors and prin
ipal ve
tors
orresponding to �1 and �2, J = diag(J1; J2) is the 
orresponding blo
k Jordanmatrix, [
0; 








T ; 
1℄T 2 R2d is a ve
tor of arbitrary 
onstants, zzzzzzzzz is a generalizedeigenve
tor 
orresponding to �0, and wwwwwwwww is a generalized eigenve
tor 
orrespond-ing to �1. Sin
e Nzzzzzzzzz =Mwwwwwwwww = 000000000 and the �rst 
olumn of C and the last 
olumnof B are zero, we have zzzzzzzzz 2 Linfeeeeeeeee1g, wwwwwwwww 2 Linfeeeeeeeee2dg. Consequently, we my assumethat zzzzzzzzz = eeeeeeeee1 and wwwwwwwww = eeeeeeeee2d.Sin
e it is also known that the matrix eP = [zzzzzzzzz P wwwwwwwww℄ is nonsingular, the solutionspa
e of (3.15) has dimension 2 d and there are no other solutions.The result of the theorem 3.4 will follow if one 
an prove that the boundary
onditions (3.16) and (3.17) imply 
0 = 
1 = 0 and 








 = 000000000 for m1 and m2suÆ
iently large. Namely, if this is true, then yyyyyyyyy` = 000000000, ` = �m1;�m1+1; : : : ;m2,whi
h implies xxxxxxxxx` = 000000000, ` = �m1;�m1 + 1; : : : ;m2 + 1 and ker eJm = f000000000g.It is in fa
t enough to show that 








 = 000000000. Namely, if 








 = 000000000, then the �rstboundary 
ondition (3.16) be
omes[A1 B℄ yyyyyyyyy�m1 = 
0 [A1B℄ zzzzzzzzz = 
0 [A1B℄ eeeeeeeee1 = 000000000:Sin
e [A1 B℄ eeeeeeeee1 is the �rst 
olumn of A1, whi
h is nonzero, 
0 must be zero.Similarly, the se
ond boundary 
ondition reads as[C A2℄ yyyyyyyyym2 = 
1 [C A2℄wwwwwwwww = 
1 [C A2℄ eeeeeeeee2d = 000000000:



INTERPOLATION OF CURVES 15The last 
olumn of A2 is 
learly nonzero, whi
h implies 
1 = 0.It remains to prove that 








 is zero. Suppose 








 6= 000000000. There exists an index i,1 � i � 2d� 2, for whi
h 
i 6= 0. Two 
ases have to be 
onsidered.a) Let 1 � i � d�1. Sin
e by lemma 3.3 j�1j < j�2j, the dominant eigenvalueof J�1 is 1=�1 and the power method asserts that if m1 is large enough,1jjPJ�m1 








jj1 PJ�m1 








 = euuuuuuuuu+O(1=m1);where euuuuuuuuu is a generalized eigenve
tor 
orresponding to �1. Suppose �rstthat j�1j 6= 1. The normalized boundary 
ondition (3.16) implies[A1B℄ euuuuuuuuu = 000000000:(3.18)We shall show that euuuuuuuuumust be zero whi
h is an obvious 
ontradi
tion. Sin
eeuuuuuuuuu is a generalized eigenve
tor 
orresponding to �1, the relation (N��1M)euuuuuuuuuholds, and(C + �1 A+ �21 B)uuuuuuuuu1 = 000000000; uuuuuuuuu2 = �1 uuuuuuuuu1; euuuuuuuuu = � uuuuuuuuu1uuuuuuuuu2 � :(3.19)Together with (3.18) one now 
on
ludes(C + �1(A�A1))uuuuuuuuu1 = 000000000:(3.20)Let us de�ne the matrix S(�) := C + �(A�A1).Lemma 3.6. The determinant of the matrix S(�) is expli
itlydetS(�) = (�1)r a detV (0; t1; t2; : : : ; tr; 1)� (�� a)r:Proof. Determinant detS(�) 
an be written asdet2666664 � (1=
� b� 1) s11 s12 � � � s1r �a� s21 s22 � � � s2r 00 s31 s32 � � � s3r 0... ... ... ... ... ...0 sr+2;1 sr+2;2 � � � sr+2;r 0
3777775 ;where skj = a uj (tj � 1)k�1 � � 1uj tk�1j :Using some basi
 properties of determinants, it simpli�es todetS(�) = (�1)r a � det[ skj ℄r+2; rk=3; j=1:The remaining determinant 
an be easily 
omputed by following the ideasof the proof of lemma 3.2.



16 E. �ZAGARBy lemma 3.3, �1 6= 0; a and the determinant of S(�1) must be nonzero.But the relations (3.20) and (3.19) then imply euuuuuuuuu = 000000000 whi
h is a 
ontradi
-tion.The same proof works in the 
ase when j�1j = 1 and 








1 := (








)d�1i=1 is notan eigenve
tor of J�11 . Thus it remains to 
onsider the 
ase when j�1j = 1and J�11 








1 = (1=�1) 








1. Sin
e then 0 < 
onst1 � jjP J�k 








jj1 � 
onst2,for all k, the normalized boundary 
ondition (3.16) be
omes[A1 B℄ euuuuuuuuu+ e
0 [A1B℄ zzzzzzzzz = 000000000;where euuuuuuuuu is a generalized eigenve
tor 
orresponding to �1 ande
0 = 
0=jjP J�m1 








jj1:This relation, (3.19), and the fa
t that [A1B℄ zzzzzzzzz = eeeeeeeee1 imply(C + �1 (A�A1))uuuuuuuuu1 = �1 e
0 eeeeeeeee1:(3.21)Thus uuuuuuuuu1 = �(�1=a)e
0 eeeeeeeeed whi
h leads either to euuuuuuuuu = 000000000 or 
ontradi
ts (3.20)and the proof of the �rst 
ase is 
omplete.b) Suppose d � i � 2d�2. The power method now assures that, as m2 tendsto in�nity, 1jjPJm2 








jj1 PJm2









onverges to a generalized eigenve
tor 
orresponding to �2. The normal-ized boundary 
ondition (3.17) be
omes1jjPJm2 








jj1 [C A2℄ yyyyyyyyym2 = [C A2℄evvvvvvvvv + e
1 wwwwwwwww +O(1=m2) = 000000000:We use very similar arguments as in the �rst 
ase. If j�2j 6= 1, the relation[C A2℄ evvvvvvvvv = 000000000(3.22)must hold. Sin
e now (N � �2M)evvvvvvvvv = 000000000, we have(C + �2A+ �22B)vvvvvvvvv1 = 000000000; vvvvvvvvv2 = �2vvvvvvvvv1; vvvvvvvvv = � vvvvvvvvv1vvvvvvvvv2 � ;(3.23)and the relation (3.22) imply(A�A2 + �2 B)vvvvvvvvv1 = 000000000:(3.24)Let T (�) := A � A2 + �B and Td�1(�) denote the �rst d � 1 
olumns ofT (�). Suppose eeeeeeeee is a ve
tor of ones.Lemma 3.7. If eT (�) = [Td�1(�) eeeeeeeee℄, thendet eT (�) = detV (0; t1; t2; : : : ; tr; 1)ar+1 � (�� a)r:



INTERPOLATION OF CURVES 17Proof. The proof of this lemma is almost the same as the proof of lemma3.2 and will be omitted.Observe that the last 
olumn of T (�) is zero for all �, and re
all that�2 6= 0; a. The 
on
lusion that T (�2) has rank d � 1 now follows dire
tlyfrom the previous lemma. Thus T (�2) has one dimensional kernel spannedby eeeeeeeeed. The only solutions of (3.24) are in Linfeeeeeeeeedg, whi
h leads to vvvvvvvvv1 = 000000000 orvvvvvvvvv1 = 
onst eeeeeeeeed. The �rst solution produ
es an obvious 
ontradi
tion evvvvvvvvv = 000000000and the se
ond one fails to satisfy (3.23).If j�2j = 1, and 








2 := (








)2d�2i=d is not an eigenve
tor of J2, the 
on
lusion(3.24) is still true. Suppose that j�2j = 1 and J2 








2 = �2 








2. If (3.17)is normalized by jjP Jm2 








jj1, whi
h is bounded now, and the relations(3.23) and [C A2℄wwwwwwwww = eeeeeeeee are used, the relation(A�A2 + �2B) vvvvvvvvv1 = e
1�2 eeeeeeeee;(3.25)where e
1 = 
1=jjP Jm2 








jj1, is obtained. Sin
e by lemma 3.7 ve
tor eeeeeeeee isnot in the image of T (�2), (3.25) has a solution only if e
1 = 0, i.e., (3.24)must hold and a 
ontradi
tion follows by previous 
on
lusions.In all 
ases 








 = 000000000, thus 
0 and 
1 must be zero too. This implies regularityof eJm for m1 and m2 large enough (i.e. m large enough) and the proof of thetheorem 3.4 is 
omplete.For the approximation order it is enough to look the error on the `-th segmentindependently, i.e., dist(BBBBBBBBB`; fffffffff). By (1.6) and (2.5) the tangent dire
tions ofBBBBBBBBB` at the boundary points are O(h) approximations of the tangent dire
tionsof fffffffff , whi
h is easily obtained by straightforward 
omputations. Consequently,there exists a smooth 
urve efffffffff with positive �rst d�1 prin
ipal 
urvatures, whi
hinterpolates the given data points on the `-th segment and the tangent dire
tionsof BBBBBBBBB` at the boundary points. Additionally, it 
an be 
hosen in su
h a way thatit interpolates fffffffff at additional two points on the `-th segment too. Thendist(BBBBBBBBB`; fffffffff) � dist(BBBBBBBBB`; efffffffff) + dist(efffffffff; fffffffff) = O(hr+4) +O(hr+4);where the �rst part follows from the single segment 
ase analysis in [7℄, and these
ond by the 
onstru
tion of efffffffff .By theorem 3.4 the Ja
obian of the nonlinear system (3.5) is nonsingular at thelimit solution from lemma 3.1. The impli
it fun
tion theorem now asserts, thatthe system (3.5) has a solution in the neighborhood of that limit solution, i.e.,for h small enough, or equivalently, m large enough. This �nally proves theresults stated in the theorem 1.1.4 Numeri
al example.A numeri
al example will be given here to 
on�rm the results obtained inthe previous se
tions. Sin
e the results for the 
urves in R3 have already beenpresented in [5℄ we shall 
onsider the 
urve in R4 .



18 E. �ZAGARLet the 
urve be given byfffffffff : [0; 10℄! R4 : � 7! fffffffff(�) := 0BB� 
os �sin �ln(2 + �)ln(1 + �) 1CCA :It 
an be veri�ed that the �rst three 
urvatures of fffffffff are positive on [0; 10℄and the 
urve satis�es our requirements. The interpolation points have been
hosen on the 
urve at the equidistant values of the parameter � . It is not aregular sampling in the sense of the theorem 1.1 but we still got a solution of theproblem. This indi
ates that the regularity of data points 
ould be omitted inthe theorem. This fa
t has been 
on�rmed by other examples too. The detailednumeri
al algorithm for solving the obtained nonlinear system together with thenumeri
al results will appear elsewhere.

2 4 6 8 10

5e-5

1e-4

1.5e-4

2e-4

2.5e-4

Figure 4.1: The estimated parametri
 error for the 
urve fffffffff and m = 6.Table 4.1: The results for the 
urve fffffffff .m Error Rate m Error Rate6 2:90 � 10�4 � 16 1:38 � 10�6 5:678 6:32 � 10�5 5:30 18 7:07 � 10�7 5:7010 1:89 � 10�5 5:41 20 3:87 � 10�7 5:7112 6:91 � 10�6 5:51 22 2:24 � 10�7 5:7314 2:92 � 10�6 5:58 24 1:36 � 10�7 5:75The parametri
 distan
e (i.e. the error) between fffffffff and BBBBBBBBB was obtained by themethod des
ribed in [2℄ and already used in [3℄. The results of the interpolation



INTERPOLATION OF CURVES 19are shown in Tab. 4.1. The �rst 
olumn is the number of segments of thespline 
urve, the se
ond one the estimated error, and the third one the rate of
onvergen
e obtained from two 
onse
utive m. Sin
e in this 
ase r = d� 2 = 2,the approximation order should be r+4 = 6, whi
h is obviously 
on�rmed by theresults in the table. Fig. 4.1 shows the estimated parametri
 error for m = 6. It
an be 
learly seen that four points are interpolated on ea
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