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ON G2 CONTINUOUS SPLINE INTERPOLATIONOF CURVES IN RdEMIL �ZAGARFaulty of Computer and Information Siene, University of Ljubljana, Tr�za�ska 251000 Ljubljana, Slovenia. email: emil�gollum.fri.uni-lj.siAbstrat.In this paper the problem of G2 ontinuous interpolation of urves in Rd by poly-nomial splines of degree n is studied. The interpolation of the data points, and twotangent diretions at the boundary is onsidered. The ase n = r + 2 = d, where ris the number of interior points interpolated by eah segment of the spline urve, isstudied in detail. It is shown that the problem is uniquely solvable asymptotially, i.e.,when the data points are sampled regularly and suÆiently dense, and lie on a regular,onvex parametri urve in Rd . In this ase the optimal approximation order is alsodetermined.AMS subjet lassi�ation: 65D05, 65D07.Key words: Spline urve, G2 ontinuity, interpolation, approximation order.1 Introdution.The problem of parametri polynomial interpolation of data points in Rd hasalready been studied in [1℄{[5℄, [7℄, [9℄ and [10℄. Perhaps [1℄ gave the �rst impe-tus to this subjet. In [9℄, a nie general approah of inreasing the approxima-tion order by parametri polynomial interpolation methods has been developed.Here, we apply this general approah to the G2 ontinuous spline ase.The geometri ontinuity is usually hosen in geometri design, sine it refersto a partiular parametrisation, and assures that the geometri invariants of theurve, i.e., the tangent diretion, the urvature, et., are ontinuous, but re-moves the inuene of the parametrisation on the shape of the urve. Of ourse,it is usually suÆient to require G2 ontinuity, sine it is almost impossible toreognize the disontinuities of the higher order derivatives by the human eye.The problem in its general form has already been onsidered in [5℄ and [7℄, andan be stated as follows. LetBBBBBBBBB := BBBBBBBBBn : [�0; �m℄! Rd(1.1)be the polynomial spline urve of degree n omposed by m segments with break-point sequene �0 < �1 < : : : < �m:



2 E. �ZAGARSuppose pointsTTTTTTTTT 0; TTTTTTTTT 1; : : : ; TTTTTTTTTN 2 Rd ; TTTTTTTTT j 6= TTTTTTTTT j+1; j = 0; 1; : : : ; N � 1;(1.2)and tangent diretions ddddddddd0; dddddddddN ;(1.3)at the boundary points TTTTTTTTT 0 and TTTTTTTTTN are given. Find a polynomial spline BBBBBBBBBde�ned by (1.1) whih isG2 ontinuous and interpolates given points and tangentdiretions.Loally, on the `-th segment, BBBBBBBBB an be given asBBBBBBBBB(�) =: BBBBBBBBB`�� � �`�1��`�1 � ; � 2 [�`�1; �`℄; ` = 1; : : : ;m;(1.4)where ��`�1 := �`��`�1. Sine BBBBBBBBB has to interpolate the data (1.2) and (1.3), its`-th polynomial piee BBBBBBBBB` should interpolate r interior and two boundary points.The interpolating onditions on the `-th segment now readBBBBBBBBB`(t`;j) = TTTTTTTTT (r+1)(`�1)+j =: TTTTTTTTT `;j ; j = 0; 1; : : : ; r + 1;(1.5)where t`;0 := 0 < t`;1 < � � � < t`;r < t`;r+1 := 1;and (t`;j)rj=1 are unknown parameter values whih have to be determined. Itremains to ful�l the G ontinuity onditions. The G1 ontinuity an be writtenin the loal parametrisation, i.e., t`, 0 � t` � 1, asddt1BBBBBBBBB1(0) = �0 ddddddddd0;ddt`+1BBBBBBBBB`+1(0) = �` ddt`BBBBBBBBB`(1); ` = 1; 2; : : : ;m� 1;(1.6) ddtmBBBBBBBBBm(1) = �m dddddddddN ;and the G2 ontinuity relations readd2dt2̀+1BBBBBBBBB`+1(0) = �2̀ d2dt2̀BBBBBBBBB`(1) + �` ddt`BBBBBBBBB`(1); ` = 1; : : : ;m� 1;(1.7)where �` and �` are unknowns and �` > 0. Fig. 1.1 shows a partiular polyno-mial piee BBBBBBBBB` that joins its neighbors.As already observed in [5℄, the assumption that the number of independent equa-tions should be equal to the number of unknowns implies the following relationd n� (d� 1) r = 3 d� 2:(1.8)This leads to two pratially important ases, n = r + 2 = d and n = r + 1 =2 d� 1, i.e., the interpolation by polynomial splines of low degree.
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Figure 1.1: A partiular segment of the spline urve and some of the importantquantities.The partiular ase d = 3 was asymptotially (i.e. for the data sampled ona regular urve dense enough) solved in [5℄. Its extension to general d, but forsegments only, an be found in [7℄. Here we takle the omposite ase. For theseond ase, i.e., n = r + 1 = 2 d� 1, the approah explained here fails and willrequire some additional researh.The main result of the paper an be stated as follows.Theorem 1.1. If the data points are sampled regularly and suÆiently dense,then there exists a G2 polynomial spline urve BBBBBBBBB, whih interpolates given datapoints and tangent diretions at the boundary. The approximation order is opti-mal, i.e., r + 4 = n+ 2.The regularity of data point mentioned in the above theorem should be ex-plained. It is lear that the solution depends on the struture of the data and wean not expet that the problem will be solvable for the arbitrary set of points.Sine the asymptoti analysis will be done, the data points will be onsideredas points on a smooth urve. They will be sampled regularly in the sense thatthe distribution of points aording to the ar length remains the same for allsegments. And suÆiently dense means that the neighboring points are loseenough to eah other.It is also lear that the approximation order is optimal sine we have r + 4interpolation onditions on eah segment (r + 2 interpolated points and twoonditions for two joining segments onerning G1 and G2 ontinuity, i.e., one



4 E. �ZAGARondition for eah segment at the breakpoint).2 The system of nonlinear equations for n = r + 2 = d.In this setion, the system of nonlinear equations (1.5){(1.7) will be trans-formed further for this partiular ase. Sine n = r + 2, the polynomial urveBBBBBBBBB`(t) := bbbbbbbbb` !`(t) + r+1Xj=0L`;j(t)TTTTTTTTT `;j(2.1)will satisfy the interpolation onditions (1.5) on [�`�1; �`℄. Here!`(t) := r+1Yj=0(t� t`;j); L`;j(t) = !`(t)(t� t`;j) _!`(t`;j) ; _!` := ddt`!`:Provided t`;j are known, the unknown leading oeÆient vetor bbbbbbbbb` an be ex-pressed in two di�erent waysbbbbbbbbb` = [t`;0; t`;0; t`;1; : : : ; t`;r; t`;r+1℄BBBBBBBBB`= [t`;0; t`;1; : : : ; t`;r; t`;r+1; t`;r+1℄BBBBBBBBB`:(2.2)Sine t`;0 = 0, t`;r+1 = 1, and for a smooth f[x0; x0; x1; : : : ; xi℄f = iXj=0 1_!(xj) [x0; xj ℄f;(2.3)the equation (2.2) an be rewritten asbbbbbbbbb` = 1_!`(0) _BBBBBBBBB`(0) + r+1Xj=1 1_!`(t`;j)t`;j (TTTTTTTTT `;j � TTTTTTTTT `;0)= 1_!`(1) _BBBBBBBBB`(1) + rXj=0 1_!`(t`;j)(t`;j � 1)(TTTTTTTTT `;j � TTTTTTTTT `;r+1):(2.4)Inserting (2.1) into (1.7) and using (2.4), (1.6) in order to replae bbbbbbbbb`, bbbbbbbbb`+1 by_BBBBBBBBB`(1), one onludes that_BBBBBBBBB`(1) = ` 0��2̀0� rXj=0 �!`(1)_!`(t`;j)(t`;j � 1)(TTTTTTTTT `;j � TTTTTTTTT `;r+1) + r+1Xj=0 �L`;j(1)TTTTTTTTT `;j1A� 0�r+1Xj=1 �!`+1(0)_!`+1(t`+1;j) t`+1;j (TTTTTTTTT `+1;j � TTTTTTTTT `+1;0) + r+1Xj=0 �L`+1;j(0)TTTTTTTTT `+1;j1A1A:(2.5)Here ` = � �!`+1(0)_!`+1(0) �` � �!`(1)_!`(1) �2̀ � �`��1 :



INTERPOLATION OF CURVES 5If we writeGGGGGGGGG0̀ = r+1Xj=1 �!`+1(0)_!`+1(t`+1;j) t`+1;j (TTTTTTTTT `+1;j � TTTTTTTTT `+1;0) + r+1Xj=0 �L`+1;j(0)TTTTTTTTT `+1;j ;GGGGGGGGG1̀ = rXj=0 �!`(1)_!`(t`;j)(t`;j � 1)(TTTTTTTTT `;j � TTTTTTTTT `;r+1) + r+1Xj=0 �L`;j(1)TTTTTTTTT `;j ;andHHHHHHHHH` = rXj=0 1_!`(t`;j) (t`;j � 1)(TTTTTTTTT `;j � TTTTTTTTT `;r+1)� r+1Xj=1 1_!`(t`;j) t`;j (TTTTTTTTT `;j � TTTTTTTTT `;0);then relation (1.6) leads by of (2.4), (2.5) to the following system of nonlinearequationsFFFFFFFFF 1 := 1_!1(1) (�21GGGGGGGGG11 �GGGGGGGGG10) +HHHHHHHHH1 � �0_!1(0)ddddddddd0 = 000000000;FFFFFFFFF ` := `_!`(1) (�2̀GGGGGGGGG1̀ �GGGGGGGGG0̀) +HHHHHHHHH`� �`�1`�1_!`(0) (�2̀�1GGGGGGGGG`�11 �GGGGGGGGG`�10 ); ` = 2; 3; : : : ;m� 1;(2.6) FFFFFFFFFm := �m_!m(1)dddddddddN +HHHHHHHHHm � �m�1m�1_!m(0) (�2m�1GGGGGGGGGm�11 �GGGGGGGGGm�10 ):Note that the equations for the �rst and for the last segment are di�erent sineddddddddd0 and dddddddddN are given. Thus one has md nonlinear equations for md salarunknowns (t`;j)m; r`=1; j=1; (�`)m̀=0; (`)m�1`=1 :The best way to takle suh systems of nonlinear equations turned out to be thehomotopy ontinuation methods, as was reported in [3℄{[5℄.3 Asymptoti analysis.Sine the system of nonlinear equations obtained in the previous setion isdiÆult to analyze in full generality, the asymptoti analysis will be appliedhere. Under ertain onditions the existene of the unique asymptoti solutionof the system (2.6) will be proved. This will be done in the following way. First,the solution at the limit point will be found. Then the regularity of the Jaobianmatrix of the analyzed system at the limit point will be proven. Sine it is verydiÆult to do it in the general ase, the regular distribution of the data points(i.e. the distribution of the parameter values at whih the underlying urvemath the data in the ar length parametrisation is equal for all the segments)will be required, whih assures the Jaobian being the Toeplitz-like matrix. Itmakes it easier to analyze, sine one an apply the general theory of systems ofdi�erene equations. After that the impliit funtion theorem will be used toestablish the existene of the solution in the neighborhood of the limit solution.



6 E. �ZAGARSuppose that the data (1.2) and (1.3) are based upon a smooth regular para-metri urve fffffffff : [0; L℄ ! Rd , parametrized by the ar length parameter. Obvi-ously, (2.6) involves data and unknowns from three onseutive segments only.Let us reall the fat, observed in [3℄, that eah blok of equations an be simpli-�ed by some translation and rotation. So fffffffff an be, without loosing generality,loally parametrized by the ar length parameter s asfffffffff `(s); s 2 [�h`�1; h` + h`+1℄;(3.1)with h` := Æ` h and bounded global mesh ratio 0 < Æ0 � Æ` � 1, wherefffffffff`(0) = TTTTTTTTT `;0 := 000000000; ddsfffffffff `(0) = eeeeeeeee1:Here eeeeeeeeei is the unit vetor, i.e.,eeeeeeeeei(0) := [0; 0; : : : ; 0| {z }i�1 ; 1; 0; : : : ; 0| {z }d�i ℄T :The domain of the de�nition of the ar length parameter s in (3.1) was hosento assure that the origin of the loal oordinate system is in TTTTTTTTT `;0 at s = 0, ands runs over the three neighboring segments of the underlying urve fffffffff whih areinvolved in the partiular set of equations whih has to be analyzed.If the �ì , i = 1; 2; : : : ; d � 1, are the �rst d � 1 prinipal urvatures of fffffffff `,expanded loally as �ì(s) = �ì;0 + 11!�ì;1 s+ 12!�ì;2 s2 + : : : ;and fffffffff ` is a regular urve in the sense thatddsfffffffff `; : : : ; dd�1dsd�1 fffffffff `are linearly independent vetors in Rd , then�ì;0 � onst > 0; i = 1; 2; : : : ; d� 2:Additionally, we shall assume that �d̀�1;0 � onst > 0. With the aid of theFrenet-Serret formulae and the expansion of the prinipal urvatures, one obtainsthe loal expansionfffffffff `(s) = fffffffff `(0) + ddsfffffffff `(0) s+ 12! d2ds2 fffffffff `(0) s2 + � � �= fffffffff `(0) + (s� 16(�1̀;0)2 s3 + � � �) eeeeeeeee1(3.2) + (12�1̀;0 s2 + 16�1̀;1 s3 + � � �) eeeeeeeee2 + (16�1̀;0 �2̀;0 s3 + � � �) eeeeeeeee3 + � � �



INTERPOLATION OF CURVES 7Using (3.1), the data points an be written asTTTTTTTTT `�1;j = fffffffff `(h`�1 (�`�1;j � 1));TTTTTTTTT `;j = fffffffff `(h` �`;j);(3.3) TTTTTTTTT `+1;j = fffffffff `(h` + h`+1 �`+1;j);where �`;0 := 0 < �`;1 < � � � < �`;r < �`;r+1 := 1, ` = 1; 2; : : : ;m, are givenparameter values. The expansion (3.2) and the equations (3.3) �nally giveTTTTTTTTT `;j = "hi Æì �ì;j 1i! i�1Yq=1 �q̀;0 +O(hi+1)#di=1 :(3.4)Applying these expansions to the equations (2.6) and multiplying them by D�1` ,where D` = diag h; 12! h2 1Yq=1�q̀;0; : : : ; 1d! hd d�1Yq=1 �q̀;0! ;the normalized system of nonlinear equations readseFFFFFFFFF ` := D�1` FFFFFFFFF ` = 000000000; ` = 1; 2; : : : ;m:(3.5)Let eTTTTTTTTT `�1;j := D�1` TTTTTTTTT `�1;j = [ Æì�1 (�`�1;j � 1)i ℄di=1 +O(h);eTTTTTTTTT `;j := D�1` TTTTTTTTT `;j = [ Æì �ì;j ℄di=1 +O(h);(3.6) eTTTTTTTTT `+1;j := D�1` TTTTTTTTT `+1;j = [ (Æ` + Æ`+1 �`+1;j)i ℄di=1 +O(h);and e�0 := �0h ; e�m := �mh :The limit solution of the normalized system is given by the following lemma.Lemma 3.1. As h! 0, the solution of the system (3.5) ise��0 = Æ1��̀ = Æ`+1Æ` ; ` = 1; 2; : : : ;m� 1e��m = Æm(3.7) t�̀;j = �`;j ; ` = 1; 2; : : : ;m; j = 1; 2; : : : ; r:�̀ = �Æ`+1Æ` �!�̀+1(0)_!�̀+1(0) � Æ2̀+1Æ2̀ �!�̀(1)_!�̀(1)��1 ; ` = 1; 2; : : : ;m� 1;where !�̀(t) = r+1Yj=0(t� t�̀;j):



8 E. �ZAGARProof. The proof is rather tehnial and some details will be omitted. Thelimit behavior of the relation (3.5) as h ! 0 has to be shown. Sine all thealulations are similar, we will, e.g., show howlimh!0D�1` GGGGGGGGG`�10 = r+1Xj=1 �!�̀(0)_!�̀(t�̀;j) t�̀;j limh!0(eTTTTTTTTT `;j � eTTTTTTTTT `;0) + r+1Xj=0 �L�̀;j(0) limh!0 eTTTTTTTTT `;j ;(3.8)an be simpli�ed to 2 Æ2̀ eeeeeeeee2 � �!�̀(0)_!�̀(0)Æ`eeeeeeeee1:Here L�̀;j(t) = !�̀(t)(t� t�̀;j) _!�̀(t�̀;j) :Reall that (3.8) is a part of the nonlinear equation eFFFFFFFFF ` = 000000000 onsidered at thelimit point.For the �rst part of expression (3.8), the relation (3.6) and well-known propertiesof the divided di�erenes are used, whih givesr+1Xj=1 �!�̀(0)_!�̀(t�̀;j) t�̀;j limh!0(eTTTTTTTTT `;j � eTTTTTTTTT `;0) = �!�̀(0) r+1Xj=1 1_!�̀(t�̀;j) [ Æì t�̀;j i�1 ℄di=1= �!�̀(0)[t�̀;0; t�̀;1; : : : ; t�̀;r+1℄[ Æì ���������i�1 ℄di=1 � �!�̀(0)_!�̀(0) [Æì t�̀;0i�1℄di=1= �!�̀(0) Æd̀ eeeeeeeeed � �!�̀(0)_!�̀(0) Æ` eeeeeeeee1:For the seond part reall also the identitiestq = r+1Xj=0 t�̀;jqL�̀;j(t); q = 0; 1; : : : ; r + 1;and tr+2 = !�̀(t) + r+1Xj=0 t�̀;jr+2L�̀;j(t);whih are applied to obtainr+1Xj=0 �eL�̀;j(0) limh!0 eTTTTTTTTT `;j = 2 Æ2̀ eeeeeeeee2 � Æd̀ �!�̀(0) eeeeeeeeed:Similarly the other terms of (3.5) are handled and it is easy to show that theysum to zero whih ompletes the proof of the lemma.It remains to prove the regularity of the Jaobian of the nonlinear system(3.5) at the limit solution. To simplify the alulation of the partial derivatives,



INTERPOLATION OF CURVES 9it is more onvenient to reverse the role of the unknowns and the parameters,as in [9℄. The impliit funtion theorem an then be applied at the end toomplete the proof. So let us assume for a while that ttttttttt` = (t`;j)m;r`=1;j=1 are givenparameters, and ���������` = (�`;j)m;r`=1;j=1 are the unknowns. Expliit omputation ofthe Jaobian requires a partiular ordering of the unknowns. The following onewill be onsidered:e�0; ���������1; 1; �1; ���������2; 2 : : : ; m�1; �m�1; ���������m; e�m:This ordering and the fat that there are only three neighboring segments in-volved in the partiular set of equations of the nonlinear system (3.5), imply thatthe Jaobian is a blok tridiagonal matrix. But the study of its regularity is stillvery diÆult, and some further assumptions are needed. Suppose that the datapoints are regularly sampled. It means that the lengths of the segments of theurve fffffffff are all equal, i.e, Æ` = 1 for all `, and the omponents of the vetor ttttttttt`(whih are parameters now) are equally distributed on eah segment, i.e.,tj := t`;j ; ` = 1; 2; : : : ;m; j = 0; 1; : : : ; r + 1:The limit solution from lemma 3.1 then beomese��0 = ��̀ = e��m = 1; ` = 1; 2; : : : ;m� 1;��̀;j = tj ; ` = 1; 2; : : : ;m; j = 1; 2; : : : ; r;(3.9) �̀ = � = � �!(0)_!(0) � �!(1)_!(1)��1 ; !(t) = r+1Yj=0(t� tj);and the Jaobian, say Jm, is a blok tridiagonal Toeplitz-like matrix. Thisproperty will be used to prove the regularity of Jm at least for m large enoughwhih will imply the theorem 1.1 stated in the introdution.What follows now is the tehnial part of the proof of the theorem.First the Jaobian Jm of the system at the limit point will be derived. If thenotation a := _!(1)= _!(0), b := �!(1)= _!(1),  := 2 �, and uj = tj=(tj � 1) is used,the olumns of Jm arising from the `-th segment (1 < ` < m) of the normalizedsystem (3.5) and omputed at the limit (3.9), are���`�1;j eFFFFFFFFF ` = a (tj � 1)2 _!(tj) [ i (tj � 1)i�1 ℄di=1;��`�1 eFFFFFFFFF ` = � 2_!(0)  [1; 0; : : : ; 0℄T ;���`�1 eFFFFFFFFF ` = � 1_!(0) [1� b ; 2 ; 0; : : : ; 0℄T ;���`;j eFFFFFFFFF ` = 1�  (uj + 1=uj)tj (tj � 1) _!(tj) [ i ti�1j ℄di=1;��` eFFFFFFFFF ` = 2 _!(1) [ i ℄di=1;



10 E. �ZAGAR���` eFFFFFFFFF ` = _!(1) [ i (i� 1� b) ℄di=1;���`+1;j eFFFFFFFFF ` = a t2j _!(tj) [ i (tj + 1)i�1 ℄di=1:Other unknowns are not involved in the equations for the `-th segment and theorresponding partial derivatives are zero. Similarly the olumns of the �rstand the last diagonal bloks are derived. Multipliation of the obtained matrixby L = diag(L1; L2; : : : ; Lm), where Li = diag(1; 1=2; : : : ; 1=d), i = 1; 2; : : : ;m,from the left, and by R = diag(R1; R2; : : : ; Rm),R1 = diag(� _!(0); vvvvvvvvvT ; _!(1) =2);Rj = diag(� _!(0)=; vvvvvvvvvT ; _!(1) =2); j = 2; 3; : : : ;m� 1;Rm = diag(� _!(0)=; vvvvvvvvvT ; _!(1));where vvvvvvvvv = [ tj (tj � 1) _!(tj)= ℄rj=1, from the right, produes the matries A1, A,B, C and A2,A1 = 26664 1 (1=� u1) t01 � � � (1=� ur) t0r 10 (1=� u1) t11 � � � (1=� ur) t1r 1... ... ... ... ...0 (1=� u1) td�11 � � � (1=� ur) td�1r 1 37775 ;A = 2666664 1=� b a11 a12 � � � a1r 11 a21 a22 � � � a2r 10 a31 a32 � � � a3r 1... ... ...0 ad1 ad2 � � � adr 1
3777775 ;where akj := (1=� uj � 1=uj) tk�1j ,B = 26664 b=a (t1 + 1)0=(a u1) � � � (tr + 1)0=(a ur) 0�(1� b)=a (t1 + 1)1=(a u1) � � � (tr + 1)1=(a ur) 0... ... ... ... ...�(d� 1� b)=a (t1 + 1)d�1=(a u1) � � � (tr + 1)d�1=(a ur) 0 37775 ;C = 26664 0 a u1 (t1 � 1)0 � � � a ur (tr � 1)0 �a0 a u1 (t1 � 1)1 � � � a ur (tr � 1)1 0... ... ... ... ...0 a u1 (t1 � 1)d�1 � � � a ur (tr � 1)d�1 0 37775 ;and A2 = 2666664 (1=� b) (1=� 1=u1) t01 � � � (1=� 1=ur) t0r 11 (1=� 1=u1) t11 � � � (1=� 1=ur) t1r 10 (1=� 1=u1) t21 � � � (1=� 1=ur) t2r 1... ... ... ... ...0 (1=� 1=u1) td�11 � � � (1=� 1=ur) td�1r 1

3777775 :



INTERPOLATION OF CURVES 11Note that all these matries are quadrati sine d = r + 2.The transformed Jaobian, say eJm, now beomes
eJm := LJmR = 26666666666664

A1 B 0 0 � � � � � � 0C A B 0 � � � � � � 00 C A . . . . . . � � � 00 0 . . . . . . . . . . . . ...... ... . . . . . . A B 0... ... ... . . . C A B0 0 0 � � � 0 C A2
37777777777775 :(3.10)

Observe that the �rst and the last diagonal bloks are di�erent from the others,sine the tangent diretions at the boundary are given. This is why the obtainedmatrix is blok Toeplitz-like and not exatly blok Toeplitz.Matries L and R are obviously invertible. Consequently, Jm is invertible ifeJm = LJmR is. It will be shown that eJm is invertible for m large enough. Thefat that the matrix is blok Toeplitz-like will be used. In this ase the problem ofthe non-singularity of the matrix is losely onneted with a partiular systemof di�erene equations. The solutions of this system depend mainly on thestruture of the polynomial�(�) = det(C + �A+ �2B); � 2 C ;and the following lemma will be proved �rst.Lemma 3.2. The determinant � is expliitly�(�) = detV (0; t1; : : : ; tr; 1)��2(�)r+1;where �2(�) = 1a �2 +�1 � 2� �+ a;and V (0; t1; : : : ; tr; 1) is the Vandermonde matrix.Proof. LetP := (C + �A+ �2 B) diag(1; t1 (t1 � 1); : : : ; tr (tr � 1); 1)= 2666664 � (1=� b) + �2 b=a p11 � � � p1r �� a�� �2 (1� b)=a p21 � � � p2r ���2 (2� b)=a p31 � � � p3r �... ... ... ... ...��2 (d� 1� b)=a pd1 � � � pdr �
3777775 ;where pkj := a t2j (tj � 1)k�1 + � (tj (tj � 1)=� t2j � (tj � 1)2) tk�1j ++ �2(tj � 1)2 (tj + 1)k�1=a:



12 E. �ZAGARThe approah based upon [8℄ will be used now. By the de�nition of the determi-nant, detP is a polynomial in variables t1; t2; : : : ; tr. A brief look at the entriesof the matrix P reveals that the total degree of its determinant is at mostdXk=3(k + 1) = r2 + 7r2 :(3.11)So, if all the zeros are guessed, one has to �nd the leading oeÆient only. Notethat (pkj)dk=1��tj = 0 = �a (�� a; �; : : : ; �)T ;(pkj)dk=1��tj = 1 = �(�� a; �; : : : ; �)Tare both proportional to the last olumn of P . Also, only one olumn of Pdepends on �xed tj , and��tj (pkj)dk=1��tj = 0 = ��2a h2 a� � a�  � 2;�a� � 1; 0; 1; 2; : : : ; d� 3iT ;��tj (pkj)dk=1��tj = 1 = [2 a; a� �;�2�;�3�; : : : ; (�d+ 1)�℄T+ � �1 � 2� [1; 1; : : : ; 1℄T ;and again the �rst, the (j + 1)-th , and the last olumn are linearly dependent.Thus detP vanishes twofold at tj = 0; 1. Sine it vanishes also for tj = tj0 ,j 6= j0, detP = g rYj=1 t2j (tj � 1)2 Y1�j<k�r(tk � tj);(3.12)with g possibly depending only on other parameters, but not on t1; t2 : : : ; tr,sine the rest of the produt is already of total degree4r +�r2� = r2 + 7r2 ;whih equals (3.11). Even more, g must equal (for example) the oeÆient of theterm t41 t52 � � � td+1r in detP . Sine this term is involved in the onsidered deter-minant only twie, namely in p10 p2;r+1Qr+2j=3 pj;j�2 and p20 p1;r+1Qr+2j=3 pj;j�2,an easy omputation gives the desired oeÆientg = f(�1)r (� (1=� b) + �2 b=a)�+ (�1)r+1 (�� �2 (1� b)=a) (�� a)g� r+2Yj=3(�2=a+ � (1=� 2) + a) = (�1)r � (�2=a+ � (1=� 2) + a)r+1:



INTERPOLATION OF CURVES 13The result of the lemma follows after (3.12) is divided by Qrj=1 tj (tj � 1).Sine the roots of � will be of partiular interest, the following observationwill be useful.Lemma 3.3. There exist only three distint real roots of �, namely �0 = 0,�1 and �2. Moreover, �1; �2 6= a and one of the roots, say �2, is dominant, i.e.,j�1j < j�2j.Proof. By lemma 3.2, the roots of � onsists of �0 = 0 and the roots of �2.Sine �2 is quadrati polynomial and (1=� 2)2� 4 > 0 (beause  < 0), �1 and�2 are real and distint. The relation �1 �2 = a2 > 0 then implies that �1 and�2 have the same sign and none of them equals a. Consequently j�1j 6= j�2j.These fats will be used to prove the following theorem.Theorem 3.4. If m is large enough, then the matrix Jm is nonsingular.Proof. It is by (3.10) enough to show that eJm is nonsingular ifm is suÆientlylarge. Suppose that there is xxxxxxxxx 2 Rd and eJm xxxxxxxxx = 000000000. It will be shown that xxxxxxxxx = 000000000if m is large enough. Let us rewrite the equation eJm xxxxxxxxx = 000000000 in the blok formeJm 2666664 xxxxxxxxx�m1xxxxxxxxx�m1+1...xxxxxxxxxm2xxxxxxxxxm2+1
3777775 = 000000000; xxxxxxxxx` 2 Rd ; ` = �m1;�m1 + 1; : : : ;m2 + 1;(3.13)where m1+m2 = m�2 and m > 2. Sine eJm is given by (3.10), equation (3.13)is equivalent to the following system of di�erene equationsA1xxxxxxxxx�m1 +Bxxxxxxxxx�m1+1 = 000000000Cxxxxxxxxx`�1 +Axxxxxxxxx` +Bxxxxxxxxx`+1 = 000000000; ` = �m1 + 1; : : : ;m2(3.14) Cxxxxxxxxxm2 +A2xxxxxxxxxm2+1 = 000000000:In order to apply the general theory of di�erene equations ([6℄, p. 181{227),the system (3.14) will be �rst transformed to the system of di�erene equationsof the �rst order. Letyyyyyyyyy` = � xxxxxxxxx`xxxxxxxxx`+1 � ; ` = �m1;�m1 + 1; : : : ;m2:Now (3.14) is equivalent toM yyyyyyyyy`+1 = N yyyyyyyyy`; ` = �m1;�m1 + 1; : : : ;m2 � 1;(3.15)where M = � I 00 B � and N = � 0 I�C �A � ;with I the identity in Rd�d , and the boundary onditions[A1 B℄ yyyyyyyyy�m1 = 000000000;(3.16) [C A2℄ yyyyyyyyym2 = 000000000:(3.17)



14 E. �ZAGARLemma 3.5. Let �(�) := det(N � �M). Then � has three real roots, �0 = 0,�1 and �2 of multipliity 1, r+1 and r+1 respetively. The general solution of(3.15) is yyyyyyyyy�m1 = PJ�m1+ 0eeeeeeeee1;yyyyyyyyy` = PJ`; ` = �m1 + 1;�m1 + 2; : : : ;m2 � 1;yyyyyyyyym2 = PJm2+ 1eeeeeeeee2d;where P = [P1 P2℄ is the matrix of generalized eigenvetors and prinipal vetorsof the matrix penil N � �M orresponding to �1 and �2, J = diag(J1; J2) isthe orresponding blok Jordan matrix and [0; T ; 1℄T 2 R2d is a vetor ofarbitrary onstants.Proof. It is easy to verify thatdet(N � �M) = det(C + �A+ �2B) = �(�):By lemma 3.2, � has three roots, �0 = 0, �1 and �2 of multipliity 1, r + 1 andr + 1 respetively. Sine the degree of � is 2r + 3 = 2d� 1 < 2d, it has exatlyone root at in�nity, say �1.To �nd a general solution of (3.15), one has to onstrut the anonial forms ofN ��iM , i = 0; 1; 2 and �0N �M . It is then well known ([6℄, p. 225{227) thatthe general solution of (3.15) isyyyyyyyyy�m1 = PJ�m1+ 0zzzzzzzzz;yyyyyyyyy` = PJ`; ` = �m1 + 1;�m1 + 2; : : : ;m2 � 1;yyyyyyyyym2 = PJm2+ 1wwwwwwwww;where P = [P1 P2℄ is the matrix of generalized eigenvetors and prinipal vetorsorresponding to �1 and �2, J = diag(J1; J2) is the orresponding blok Jordanmatrix, [0; T ; 1℄T 2 R2d is a vetor of arbitrary onstants, zzzzzzzzz is a generalizedeigenvetor orresponding to �0, and wwwwwwwww is a generalized eigenvetor orrespond-ing to �1. Sine Nzzzzzzzzz =Mwwwwwwwww = 000000000 and the �rst olumn of C and the last olumnof B are zero, we have zzzzzzzzz 2 Linfeeeeeeeee1g, wwwwwwwww 2 Linfeeeeeeeee2dg. Consequently, we my assumethat zzzzzzzzz = eeeeeeeee1 and wwwwwwwww = eeeeeeeee2d.Sine it is also known that the matrix eP = [zzzzzzzzz P wwwwwwwww℄ is nonsingular, the solutionspae of (3.15) has dimension 2 d and there are no other solutions.The result of the theorem 3.4 will follow if one an prove that the boundaryonditions (3.16) and (3.17) imply 0 = 1 = 0 and  = 000000000 for m1 and m2suÆiently large. Namely, if this is true, then yyyyyyyyy` = 000000000, ` = �m1;�m1+1; : : : ;m2,whih implies xxxxxxxxx` = 000000000, ` = �m1;�m1 + 1; : : : ;m2 + 1 and ker eJm = f000000000g.It is in fat enough to show that  = 000000000. Namely, if  = 000000000, then the �rstboundary ondition (3.16) beomes[A1 B℄ yyyyyyyyy�m1 = 0 [A1B℄ zzzzzzzzz = 0 [A1B℄ eeeeeeeee1 = 000000000:Sine [A1 B℄ eeeeeeeee1 is the �rst olumn of A1, whih is nonzero, 0 must be zero.Similarly, the seond boundary ondition reads as[C A2℄ yyyyyyyyym2 = 1 [C A2℄wwwwwwwww = 1 [C A2℄ eeeeeeeee2d = 000000000:



INTERPOLATION OF CURVES 15The last olumn of A2 is learly nonzero, whih implies 1 = 0.It remains to prove that  is zero. Suppose  6= 000000000. There exists an index i,1 � i � 2d� 2, for whih i 6= 0. Two ases have to be onsidered.a) Let 1 � i � d�1. Sine by lemma 3.3 j�1j < j�2j, the dominant eigenvalueof J�1 is 1=�1 and the power method asserts that if m1 is large enough,1jjPJ�m1 jj1 PJ�m1  = euuuuuuuuu+O(1=m1);where euuuuuuuuu is a generalized eigenvetor orresponding to �1. Suppose �rstthat j�1j 6= 1. The normalized boundary ondition (3.16) implies[A1B℄ euuuuuuuuu = 000000000:(3.18)We shall show that euuuuuuuuumust be zero whih is an obvious ontradition. Sineeuuuuuuuuu is a generalized eigenvetor orresponding to �1, the relation (N��1M)euuuuuuuuuholds, and(C + �1 A+ �21 B)uuuuuuuuu1 = 000000000; uuuuuuuuu2 = �1 uuuuuuuuu1; euuuuuuuuu = � uuuuuuuuu1uuuuuuuuu2 � :(3.19)Together with (3.18) one now onludes(C + �1(A�A1))uuuuuuuuu1 = 000000000:(3.20)Let us de�ne the matrix S(�) := C + �(A�A1).Lemma 3.6. The determinant of the matrix S(�) is expliitlydetS(�) = (�1)r a detV (0; t1; t2; : : : ; tr; 1)� (�� a)r:Proof. Determinant detS(�) an be written asdet2666664 � (1=� b� 1) s11 s12 � � � s1r �a� s21 s22 � � � s2r 00 s31 s32 � � � s3r 0... ... ... ... ... ...0 sr+2;1 sr+2;2 � � � sr+2;r 0
3777775 ;where skj = a uj (tj � 1)k�1 � � 1uj tk�1j :Using some basi properties of determinants, it simpli�es todetS(�) = (�1)r a � det[ skj ℄r+2; rk=3; j=1:The remaining determinant an be easily omputed by following the ideasof the proof of lemma 3.2.



16 E. �ZAGARBy lemma 3.3, �1 6= 0; a and the determinant of S(�1) must be nonzero.But the relations (3.20) and (3.19) then imply euuuuuuuuu = 000000000 whih is a ontradi-tion.The same proof works in the ase when j�1j = 1 and 1 := ()d�1i=1 is notan eigenvetor of J�11 . Thus it remains to onsider the ase when j�1j = 1and J�11 1 = (1=�1) 1. Sine then 0 < onst1 � jjP J�k jj1 � onst2,for all k, the normalized boundary ondition (3.16) beomes[A1 B℄ euuuuuuuuu+ e0 [A1B℄ zzzzzzzzz = 000000000;where euuuuuuuuu is a generalized eigenvetor orresponding to �1 ande0 = 0=jjP J�m1 jj1:This relation, (3.19), and the fat that [A1B℄ zzzzzzzzz = eeeeeeeee1 imply(C + �1 (A�A1))uuuuuuuuu1 = �1 e0 eeeeeeeee1:(3.21)Thus uuuuuuuuu1 = �(�1=a)e0 eeeeeeeeed whih leads either to euuuuuuuuu = 000000000 or ontradits (3.20)and the proof of the �rst ase is omplete.b) Suppose d � i � 2d�2. The power method now assures that, as m2 tendsto in�nity, 1jjPJm2 jj1 PJm2onverges to a generalized eigenvetor orresponding to �2. The normal-ized boundary ondition (3.17) beomes1jjPJm2 jj1 [C A2℄ yyyyyyyyym2 = [C A2℄evvvvvvvvv + e1 wwwwwwwww +O(1=m2) = 000000000:We use very similar arguments as in the �rst ase. If j�2j 6= 1, the relation[C A2℄ evvvvvvvvv = 000000000(3.22)must hold. Sine now (N � �2M)evvvvvvvvv = 000000000, we have(C + �2A+ �22B)vvvvvvvvv1 = 000000000; vvvvvvvvv2 = �2vvvvvvvvv1; vvvvvvvvv = � vvvvvvvvv1vvvvvvvvv2 � ;(3.23)and the relation (3.22) imply(A�A2 + �2 B)vvvvvvvvv1 = 000000000:(3.24)Let T (�) := A � A2 + �B and Td�1(�) denote the �rst d � 1 olumns ofT (�). Suppose eeeeeeeee is a vetor of ones.Lemma 3.7. If eT (�) = [Td�1(�) eeeeeeeee℄, thendet eT (�) = detV (0; t1; t2; : : : ; tr; 1)ar+1 � (�� a)r:



INTERPOLATION OF CURVES 17Proof. The proof of this lemma is almost the same as the proof of lemma3.2 and will be omitted.Observe that the last olumn of T (�) is zero for all �, and reall that�2 6= 0; a. The onlusion that T (�2) has rank d � 1 now follows diretlyfrom the previous lemma. Thus T (�2) has one dimensional kernel spannedby eeeeeeeeed. The only solutions of (3.24) are in Linfeeeeeeeeedg, whih leads to vvvvvvvvv1 = 000000000 orvvvvvvvvv1 = onst eeeeeeeeed. The �rst solution produes an obvious ontradition evvvvvvvvv = 000000000and the seond one fails to satisfy (3.23).If j�2j = 1, and 2 := ()2d�2i=d is not an eigenvetor of J2, the onlusion(3.24) is still true. Suppose that j�2j = 1 and J2 2 = �2 2. If (3.17)is normalized by jjP Jm2 jj1, whih is bounded now, and the relations(3.23) and [C A2℄wwwwwwwww = eeeeeeeee are used, the relation(A�A2 + �2B) vvvvvvvvv1 = e1�2 eeeeeeeee;(3.25)where e1 = 1=jjP Jm2 jj1, is obtained. Sine by lemma 3.7 vetor eeeeeeeee isnot in the image of T (�2), (3.25) has a solution only if e1 = 0, i.e., (3.24)must hold and a ontradition follows by previous onlusions.In all ases  = 000000000, thus 0 and 1 must be zero too. This implies regularityof eJm for m1 and m2 large enough (i.e. m large enough) and the proof of thetheorem 3.4 is omplete.For the approximation order it is enough to look the error on the `-th segmentindependently, i.e., dist(BBBBBBBBB`; fffffffff). By (1.6) and (2.5) the tangent diretions ofBBBBBBBBB` at the boundary points are O(h) approximations of the tangent diretionsof fffffffff , whih is easily obtained by straightforward omputations. Consequently,there exists a smooth urve efffffffff with positive �rst d�1 prinipal urvatures, whihinterpolates the given data points on the `-th segment and the tangent diretionsof BBBBBBBBB` at the boundary points. Additionally, it an be hosen in suh a way thatit interpolates fffffffff at additional two points on the `-th segment too. Thendist(BBBBBBBBB`; fffffffff) � dist(BBBBBBBBB`; efffffffff) + dist(efffffffff; fffffffff) = O(hr+4) +O(hr+4);where the �rst part follows from the single segment ase analysis in [7℄, and theseond by the onstrution of efffffffff .By theorem 3.4 the Jaobian of the nonlinear system (3.5) is nonsingular at thelimit solution from lemma 3.1. The impliit funtion theorem now asserts, thatthe system (3.5) has a solution in the neighborhood of that limit solution, i.e.,for h small enough, or equivalently, m large enough. This �nally proves theresults stated in the theorem 1.1.4 Numerial example.A numerial example will be given here to on�rm the results obtained inthe previous setions. Sine the results for the urves in R3 have already beenpresented in [5℄ we shall onsider the urve in R4 .



18 E. �ZAGARLet the urve be given byfffffffff : [0; 10℄! R4 : � 7! fffffffff(�) := 0BB� os �sin �ln(2 + �)ln(1 + �) 1CCA :It an be veri�ed that the �rst three urvatures of fffffffff are positive on [0; 10℄and the urve satis�es our requirements. The interpolation points have beenhosen on the urve at the equidistant values of the parameter � . It is not aregular sampling in the sense of the theorem 1.1 but we still got a solution of theproblem. This indiates that the regularity of data points ould be omitted inthe theorem. This fat has been on�rmed by other examples too. The detailednumerial algorithm for solving the obtained nonlinear system together with thenumerial results will appear elsewhere.
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Figure 4.1: The estimated parametri error for the urve fffffffff and m = 6.Table 4.1: The results for the urve fffffffff .m Error Rate m Error Rate6 2:90 � 10�4 � 16 1:38 � 10�6 5:678 6:32 � 10�5 5:30 18 7:07 � 10�7 5:7010 1:89 � 10�5 5:41 20 3:87 � 10�7 5:7112 6:91 � 10�6 5:51 22 2:24 � 10�7 5:7314 2:92 � 10�6 5:58 24 1:36 � 10�7 5:75The parametri distane (i.e. the error) between fffffffff and BBBBBBBBB was obtained by themethod desribed in [2℄ and already used in [3℄. The results of the interpolation
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