
On Curve Interpolation in IRdJernej Kozak and Emil �ZagarAbstrat. In this paper the interpolation by G2 ontinuous spline urvesof degree n in IRd is studied. There are r interior and two boundary datapoints interpolated on eah segment of the spline urve. The general formof the spline urve, as well as the de�ning system of nonlinear equationsare derived. The asymptoti existene of the solution, and the approxi-mation order are studied for the polynomial ase only. It is shown thatthe optimal approximation order is ahieved, and asymptoti existene isestablished provided the relation r = n� 2 is satis�ed. These onlusionshold independently of d. It is also pointed out that the underlying analysisould not be arried over to the ase r = n� 1.x1. IntrodutionThe interpolation problem onsidered is the following. Let the pointsTTTTTTTTT 0; TTTTTTTTT 1; : : : ; TTTTTTTTTN 2 IRd; TTTTTTTTT j 6= TTTTTTTTT j+1; all j; d � 2; (1)and the tangent diretions ddddddddd0; dddddddddN (2)at the boundary points be given. Find a G2 ontinuous spline urve BBBBBBBBBn ofdegree n whih interpolates the presribed data.The problem appeared �rst as a partiular limit ase in [2℄, and wasfurther generalized in several papers, among them in [3{5, 6, 9{10℄. A generalapproah to the approximation order ahieved an be found in [8℄.Here, the general setup is takled. The interpolating spline urve in theLagrange form is established and the de�ning system of nonlinear equationsis derived in general. However, the asymptoti existene of the solution (i.e.the existene of the solution when given points are sampled densely enough)and the approximation order turned out too omprehensive to be studied herein a general framework. The positive onlusions for the single segment asewhen r = n � 2 are established. It is possible to extend these results tothe m-segment spline urve, but the proofs are not short, and will appearSaint-Malo Proeedings 1XXX, XXX, and Larry L. Shumaker (eds.), pp. 1{10.Copyright o 2000 by Vanderbilt University Press, Nashville, TN.ISBN 1-xxxxx-xxx-x.All rights of reprodution in any form reserved.



2 Jernej Kozak and Emil �Zagarelsewhere. On the ontrary, as one ould guess from [8℄, the ase r = n� 1 isnot enouraging.Why would one use the G2-ontinuous splines as interpolating urves?Quite learly, the derivative ontinuity at the breakpoints beomes in thisway independent of the loal parametrisation. Also, these urves ould beseen as a generalization of the odd order spline funtion interpolation at knots,applied so suessfully in many ases. The order of G-ontinuity 2 is pinneddown by the human eye, sometimes quite important in CAGD: it an detetthe ontinuity, the ontinuity of the tangent diretion and the urvature, buthardly higher order geometri quantities.Throughout the paper bold faed letters will stand for vetors, and or-dinary ones for salars. The dot produt on IRd will be denoted by ��������� and itsimplied norm by jj���������jj. Derivatives with respet to the global (or loal) pa-rameter will be denoted by _________ (or d=d�), and those with respet to the naturalparameter by 0.Now let BBBBBBBBBn be a ontinuous spline urve of degree n with m segmentsBBBBBBBBB := BBBBBBBBBn : [�0; �m℄! IRdwith breakpoints �0 < �1 < : : : < �m;given pieewise as BBBBBBBBB(�) = BBBBBBBBB`(� � �`�1��`�1 ); � 2 [�`�1; �`℄;i.e., loally parametrized on [0; 1℄. Suppose BBBBBBBBB interpolates the data (1), and(2). If r interior and two boundary points are to be met on eah segment,then N = m(r+1). Further, on the `-th segment the interpolation onditionsreadBBBBBBBBB`(t`;j) = TTTTTTTTT `;j := TTTTTTTTT (`�1)(r+1)+j ; j = 0; 1; : : : ; r + 1; ` = 1; 2; : : : ;m; (3)where 0 =: t`;0 < t`;1 < � � � < t`;r+1 := 1;and (t`;j)rj=1 are the unknown parameters to be determined. Let xxxxxxxxx ^ yyyyyyyyy 7!(xiyj � xjyi)i<j denote the 2-wedge produt. The geometri ontinuity of BBBBBBBBBrequires the tangent diretion 1jj _BBBBBBBBBjj _BBBBBBBBB (4)as well as the urvature 1jj _BBBBBBBBBjj3 _BBBBBBBBB ^ �BBBBBBBBB (5)to be ontinuous at the breakpoints. Additionally, at the boundary points thetangent diretions ddddddddd0 and dddddddddN have to be interpolated too, i.e.,ddddddddd0 ^ _BBBBBBBBB(�0) = _BBBBBBBBB(�m) ^ dddddddddN = 000000000: (6)
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Fig. 1. An interpolating spline urve with three segments .Fig. 1 gives an example of suh an interpolating spline urve for r = 1, n = 3,and d = 3. A brief look at the onditions (3){(6) reveals that the number of in-dependent equations would be equal to the number of independent unknownsif d n� (d� 1) r = 3 d� 2: (7)As already observed in [5℄, for �xed d this Diophantine equation always hasan in�nite number of nonnegative solutions. The following lemma gives itsgeneral solution.Lemma 1. The possible hoies of pairs r and n that satisfy (7) for �xed dare given by r = d� 2 + dk; n = d+ (d� 1)k; k = 0; 1; : : : : (8)Proof: The relation (7) an be rewritten asd(n� d)� (d� 1)(r � d+ 2) = 0:Sine d � 2, the numbers d and d� 1 are relatively prime. So d must divider � d+ 2, and d� 1 must divide n� d, i.e.,r � d+ 2d = n� dd� 1 = kfor an integer k. But r = d � 2 + dk � 0 implies k � 2d � 1 > �1; and theonlusion follows.



4 Jernej Kozak and Emil �Zagarx2. The De�ning EquationsSeveral approahes were used to simplify the onditions (3){(6) for partiularhoies of d, n, and r. Here we show that this an be done in general, whihwill provide an opportunity to unify the omputer programs. Let us onsidera single segment �rst. In this ase, the data to be interpolated are the pointsTTTTTTTTT 0; TTTTTTTTT 1; : : : ; TTTTTTTTT r+1, TTTTTTTTT j 6= TTTTTTTTT j+1, as well as tangent diretions ddddddddd0, dddddddddr+1 at theboundary points. Suppose r and n are given by (8). Consider the ase n = r+2�rst, i.e., k = 0. The interpolating polynomial urve an be written expliitlyin Lagrange form as BBBBBBBBB := bbbbbbbbb ! + r+1Xj=0 TTTTTTTTT jLjwith !(t) := r+1Yj=0(t� tj); Lj(t) := !(t)(t� tj)!0(tj) ; (9)tj := t1;j , and the values (tj)rj=1, to be determined. Here bbbbbbbbb 2 IRd denotes theunknown leading oeÆient vetor. If k � 1, one hasr + 2 = d(k + 1) > d(k + 1)� k = n;and BBBBBBBBB is of degree at most r + 1, i.e.,BBBBBBBBB = r+1Xj=0 TTTTTTTTT jLj :In partiular, this imposes additional onditionsdegree r+1Xj=0 TTTTTTTTT jLj � n (10)for k > 1. An easy way to meet the tangent diretion onditions (6) is tointrodue two additional (stritly positive) real unknowns, �0 and �r+1, andrequire _BBBBBBBBB(t0) = �0ddddddddd0; _BBBBBBBBB(tr+1) = �r+1dddddddddr+1: (11)Let ��1 = �0 := t0; �j := tj ; j = 1; 2; : : : ; r; �r+2 = �r+1 := tr+1: (12)Sine BBBBBBBBB is a polynomial of degree � n, the divided di�erene, based uponn+ 2 = r + 4� kpoints maps it to zero. So the onditions (11) and (10) an be written in aompat form as[�j�1; �j; : : : ; �j+r+2�k℄BBBBBBBBB = 0; j = 0; 1; : : : ; k; (13)



On Curve Interpolation in IRd 5whih is a system of d(k + 1) nonlinear equations for r + 2 = d(k + 1) salarunknowns �0; t1; t2; : : : ; tr; �r+1: (14)In the ase n = r+2, one has to determine additionally the oeÆient vetorbbbbbbbbb, for example asbbbbbbbbb = [t0; t0; t1; : : : ; tr; tr+1℄BBBBBBBBB = [t0; t1; : : : ; tr; tr+1; tr+1℄BBBBBBBBB: (15)Now, for an m-segment spline urve, the diretions ddddddddd`; ` = 1; 2; : : : ;m�1, areunknown, as well as�`;0; t`;1; t`;2; : : : ; t`;r; �`;r+1; ` = 1; 2; : : : ;m: (16)But one an still write the interpolation onditions on the `-th segment as[�`;j�1; �`;j; : : : ; �`;j+r+2�k℄BBBBBBBBB` = 0; j = 0; 1; : : : ; k; (17)where �`;j are de�ned as in (12), but this time for the omposite ase. Inaddition, the missing (d� 1)(m� 1) equations are supplied by the ontinuityonditions of the urvature (5).x3. Asymptoti Existene and Approximation OrderThe system of equations based on (17) and ontinuity of urvature (5) is non-linear, and one of the approahes to study it is to assume that the data (1) and(2) are based upon a smooth underlying regular parametri urve fffffffff : I ! IRd,parametrized by the arlength s. The loal expansion of the urve fffffffff , and thedata TTTTTTTTT `;j (sampled densely enough), give rise to an asymptoti analysis of thenonlinear system. The simplest way to obtain the loal expansion is to use theFrenet frame as the loal oordinate system, and the Frenet-Serett formulaeto obtain this expansion. Let (eeeeeeeeei(s))di=1 denote the Frenet frame, withfffffffff 0 = eeeeeeeee1: (18)The Frenet-Serret formulae readeeeeeeeee01(s) = �1(s)eeeeeeeee2(s);eeeeeeeee0i(s) = ��i�1(s)eeeeeeeeei�1(s) + �i(s)eeeeeeeeei+1(s); i = 2; 3; : : : ; d� 1; (19)eeeeeeeee0d(s) = ��d�1(s)eeeeeeeeed�1(s);where �i are �rst d� 1 prinipal urvatures of fffffffff , expanded as�i(s) = �i0 + 11!�i1s+ 12!�i2s2 + : : : : (20)Sine fffffffff is a regular urve, �i0 � onst > 0; i = 1; 2; : : : ; d � 2. We willadditionally assume that �d0 � onst > 0. Beginning with (18), the higher



6 Jernej Kozak and Emil �Zagarderivatives of fffffffff an be omputed by (19) and (20). This produes the requiredexpansionfffffffff(s) = fffffffff(0) + fffffffff 0(0)s+ 12!fffffffff 00(0)s2 + � � �= fffffffff(0) + (s� 16�21;0s3 + � � �)eeeeeeeee1(0) (21)+ (12�1;0s2 + 16�1;1s3 + � � �)eeeeeeeee2(0) + (16�1;0�2;0s3 + � � �)eeeeeeeee3(0) + � � �Let us now onsider the single segment ase of the interpolation problemwith data based on a smooth fffffffff : [0; h℄! IRd,ddddddddd0 = fffffffff 0(�0h); TTTTTTTTT j = fffffffff(�jh); j = 0; 1; : : : ; r + 1; dddddddddr+1 = fffffffff 0(�r+1h);with points separated independently of h, i.e.,0 := �0 < �1 < � � � < �r < �r+1 := 1:Sine translation and rotation do not inuene the asymptoti analysis, wemay assume fffffffff(0) = 000000000, andeeeeeeeeei(0) = (Æi;j)dj=1; i = 1; 2; : : : ; d: (22)Then, with the help of (21), one obtainsfffffffff(�jh) =  1i!�ijhi i�1Yq=0�q;0 +O(hi+1)!di=1 ; (23)and a similar expression for fffffffff 0(h). Sine the divided di�erene is a linearfuntional, we an normalize the system (13) by multiplying the data valuesby D�1, with D := diag 1i! hi i�1Yq=1�q;0!di=1 :Let efffffffff(s) := (si)di=1 denote the leading part of the normalized fffffffff . Then[t0; t0; t1; : : : ; tr; tr+1; tr+1℄D�1BBBBBBBBB = [t0; t0; t1; : : : ; tr; tr+1; tr+1℄eBBBBBBBBB +O(h);(24)and eBBBBBBBBB is a polynomial of degree � n = r + 2 that satis�es the interpolationonditions eBBBBBBBBB0(tj) = e�jefffffffff 0(�j); j = 0; r + 1;eBBBBBBBBB(tj) = efffffffff(�j); j = 0; 1; : : : ; r; r+ 1;where e�0 := �0h ; e�r+1 := �r+1h :



On Curve Interpolation in IRd 7Note that all the omponents of efffffffff are polynomials of degree � d = r+2. Thisimplies that [�0; �0; �1; : : : ; �r; �r+1; �r+1℄efffffffff = 0; (25)and the solution of (24) in the limit h! 0 now reads asttttttttt� := (e��0; t�1; t�2; : : : ; t�r; e��r+1) = (1; �1; �2; : : : ; �r; 1): (26)To prove the existene of the solution for h small enough, it is suÆient toshow that the Jaobian of the system (24) is nonsingular at the limit (26).The Jaobian will be determined with the help of the following fat: if xj isdi�erent from all the other points xi, and if a funtion g is smooth enough,one has � ��xj [: : : ; xj ; : : :℄�g = ddxj �[: : : ; xj; : : :℄g�� g0(xj)Qi 6=j(xj � xi)= [: : : ; xj; xj; : : :℄g � g0(xj)Qi 6=j(xj � xi) : (27)
Consider now eBBBBBBBBB = �eBBBBBBBBB�efffffffff�+efffffffff . Sine eBBBBBBBBB�efffffffff = 0 at ttttttttt�, all its partial derivativeswith respet to tj vanish, and this di�erene ontributes to the Jaobian atthe limit point ttttttttt� only in the �rst and last olumn, i.e.,���0 [t0; t0; t1; : : : ; tr; tr+1; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 1(�0 � �r+1)e!0(�0)efffffffff 0(�0);���r+1 [t0; t0; t1; : : : ; tr; tr+1; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 1(�r+1 � �0)e!0(�r+1)efffffffff 0(�r+1);(28)where ! is given by (9), and e! := !��ttttttttt� :The polynomial urve efffffffff does not depend on e�0; e�r+1, and from (27) and (25)one obtains the olumns 2; 3; : : : ; r + 1 with j = 1; 2; : : : ; r as� ��tj [t0; t0; t1; : : : ; tr; tr+1; tr+1℄� efffffffff ��ttttttttt� = � 1(�j � �0)(�j � �r+1)e!0(tj)efffffffff 0(�j):It is now straightforward to see that the Jaobian at ttttttttt� is the Vandermondematrix V (�0; �1; : : : ; �r+1), multiplied by D1 := diag(i)di=1 from the left, andbyD2 := diag�� 1e!0(�0) ; 1�1(1� �1)e!0(�1) ; : : : ; 1�r(1� �r)e!0(�r) ; 1e!0(�r+1)�from the right. This prepares the proof of the following theorem.



8 Jernej Kozak and Emil �ZagarTheorem 2. The system (13) has a unique solution for h small enough. Theapproximation order of the resulting interpolating polynomial urve BBBBBBBBBn isoptimal, i.e., r + 4 = n+ 2.Proof: Sine the matries V (�0; �1; : : : ; �r+1), D1 and D2 are nonsingular,the Jaobian at the limit point ttttttttt� is nonsingular, too, and the existene of aunique solution for h small enough is established. Furthermore, the unknownparameters are of the form�0 = �r+1 = h+O(h2); tj = �j +O(h); j = 1; 2; : : : ; r: (29)Sine there are r+2 points, as well as two diretions interpolated, the optimalapproximation order is quite learly � r + 4. The proof will now follow theapproah applied in [2℄, and extended in [5℄. It is based on a reparametrisationthat transforms the diretion interpolation to the derivative interpolation, andgives an estimate of the parametri approximation order as de�ned in [7℄.Reall (22), and the fat that interpolation onditions are satis�ed. By [2℄and [5℄, it is now enough to on�rm that all the omponents of fffffffff and BBBBBBBBB anbe reparametrized by the ordinate of the �rst omponent of both urves. Asto fffffffff , for h small enough this fat is obvious. The �rst omponent behavesby (21) as s+O(s3), and the others at least as O(s2). To establish the sameonlusion for BBBBBBBBB, it is enough to show that_BBBBBBBBB =  h(Æ1i)di=1 +O(h2);  6= 0: (30)Further, the optimal approximation order proof depends on the additionalrelations BBBBBBBBB(q) = O(hq); q = 2; 3; : : : ; r + 2: (31)The result required then follows from the standard error estimate of interpo-lation, and the fat that the (r+4)-th derivative of BBBBBBBBB with respet to the newparameter is bounded independently of h. Let us verify the relations (30) and(31). Reall �rsttq = r+1Xj=0 tqjLj(t); q = 0; 1; : : : ; r + 1; tr+2 = !(t) + r+1Xj=0 tr+2j Lj(t): (32)The divided di�erene [t0; t0; t1; : : : ; tr; tr+1℄ maps polynomials of degree �r+1 = d�1 to zero, and depends ontinuously on its arguments if applied toa smooth funtion. Thus bbbbbbbbb by (15) and (23) near the limit point ttttttttt� behaveslike bbbbbbbbb = �O(hd);O(hd); : : : ;O(hd); �d hd +O(hd+1)�T ;where �i =Qi�1q=0 �q;0 > 0. On the other hand, (29) and (32) imply thatr+1Xj=0 TTTTTTTTT jLj(t) = r+1Xj=0 fffffffff(�jh)Lj(t)= ��1 h t; : : : ; �d�1 hd�1 td�1; �d hd (td � !(t))�T (1 +O(h)):



On Curve Interpolation in IRd 9But BBBBBBBBB(q)(t) = bbbbbbbbb !(t)(q) + r+1Xj=0 TTTTTTTTT jLj(t)(q); q = 1; 2; : : : ; r + 2;and (31) follows. The proof is omplete.There is no hope that this approah ould be used for all k. In fat, itfails already for k = 1, as we will show now. By (13), the equation (24) isreplaed by[t0; t0; t1; : : : ; tr; tr+1℄D�1BBBBBBBBB = [t0; t0; t1; : : : ; tr; tr+1℄eBBBBBBBBB +O(h);[t0; t1; : : : ; tr; tr+1; tr+1℄D�1BBBBBBBBB = [t0; t1; : : : ; tr; tr+1; tr+1℄eBBBBBBBBB +O(h):Further, as in the proof of Theorem 2, the �rst olumn of the Jaobian isdetermined from���0 [t0; t0; t1; : : : ; tr; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 1e!0(�0)efffffffff 0(�0);���0 [t0; t1; : : : ; tr; tr+1; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 000000000;the last olumn from���r+1 [t0; t0; t1; : : : ; tr; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 000000000;���r+1 [t0; t1; : : : ; tr; tr+1; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 1e!0(�r+1)efffffffff 0(�r+1);and the other olumns from� ��tj [t0; t0; t1; : : : ; tr; tr+1℄� efffffffff ��ttttttttt� = � 1(�j � �0)e!0(tj)efffffffff 0(�j);� ��tj [t0; t1; : : : ; tr; tr+1; tr+1℄� efffffffff ��ttttttttt� = � 1(�j � �r+1)e!0(tj)efffffffff 0(�j):After normalizing the Jaobian from the left by D�11 , and by D�12 from theright one obtains the matrix A := (aij)2di;j=1 withai;1 = Æi;1; i = 1; 2; : : : ; 2d;ai;2d = 0; ai+d;2d = 1; i = 1; 2; : : : ; d;andai;j = �ij�1 � �i�1j�1; ai+d;j = �ij�1; i = 1; 2; : : : ; d; j = 2; 3; : : : ; 2d� 1:A simple rank preserving transformationai;j 7! ai;j � ai�1;j ; i = 2d; 2d� 1; : : : ; d+ 1; j = 1; 2; : : : ; 2d;transforms A to a matrix with row i equal to row i + d for i = 2; 3; : : : ; d. Itis now easy to see that the rank of the matrix A is d + 1, and onsequentlydim ker A = d� 1. Thus, sine the Jaobian is singular, some other approahsuh as [1℄, pp. 154{155, should be applied to arry out the asymptoti anal-ysis.
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