ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES

JERNEJ KOZAK* AND EMIL ZAGART

Abstract. In this paper, geometric interpolation by parametric polynomial curves is considered.
Discussion is focused on the case where the number of interpolated points is equal to d + 2, and d
denotes the degree of the interpolating polynomial curve. The interpolation takes place in R%.
Even though the problem is nonlinear, simple necessary and sufficient conditions for existence of the
solution are stated. These conditions are entirely geometric, and do not depend on the asymptotic
analysis. Furthermore, they provide an efficient and stable way to the numeric solution of the
problem.
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1. Introduction. Let a sequence of data points
TOlev' . 7TT+1 € ]Rd7 Ti # Ti+17

be given. A parametric curve interpolates these points in the geometric sense if
the parameter values at which it passes through the points T'; are not prescribed in
advance. In the limiting case of the geometric interpolation if two consecutive points
coincide, this scheme leads to the interpolation of a point, and a tangent direction
at the same parameter value. Further, threefold interpolation at a point requires
also the curvature to be known there, etc. The threefold interpolation by cubics in
the plane can be traced back to [3], the paper that initiated the study of geometric
interpolation. In order to make the proofs of the results simple, only distinct points
T; will be considered in this paper. The extension to the osculatory case will appear
elsewhere.

The disadvantage of the geometric approach is obvious. Namely, the problem of
finding the interpolatory curve is nonlinear, so the questions of existence, uniqueness,
and computation of the solution arise.

However, there are important advantages too. Free parameter values at which
the points T'; are interpolated may raise the approximation order. This fact has been
observed in [3], and in many of the subsequent papers. As a bound for the polynomial
geometric interpolation, it has been conjectured in [5] that a parametric polynomial
curve of degree n in d dimensional Euclidean space can, in general, interpolate

n—1
2= 1 —
r+ n+ +{d—1J

points in R?, and reach the same approximation order. The conjecture has been
proved only for a few particular cases. But perhaps the most important bonus of
all is that the geometric approach provides the basis for the G™ continuous spline
schemes where the interpolants do not depend on the local parametrisation. This is
an important and often-required property in the CAGD applications.
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Suppose now that the interpolatory curve is a parametric polynomial curve
B, :[a,b] = R?

of degree n. Since linear reparametrisation does not change the degree of the polyno-
mial, the assumption a := 0 and b := 1 can be made. Thus the construction of B,
requires to determine t;,

(1.1) to:=0<t1 <ta<...<tp <tpys:=1,
such that
(1.2) B,(t;)=T;, i=0,1,...,r + 1.

This is the nonlinear part of the problem. Once ¢; are known, it is straightforward
to obtain the curve B, in any of the well-known forms such as Bézier, Newton or
Lagrange.

In order to keep the number of free parameters equal to the number of the un-
knowns, a certain Diophantine equation has to be satisfied ([4]). The case

(1.3) n=r=d

turns out to be the simplest to handle ([6]). Nevertheless, few results can be found in
the literature without the assumption that the data points are sufficiently dense and
taken from some smooth underlying curve. In the plane case (d = 2), some results
are included in [10, 8, 9], and in the space case (d = 3) in [4].

As it will be shown below, the case n = r = d can be worked out without any
asymptotic assumptions. Perhaps the methods applied here could be used to study
more complicated problems too, such as those outlined in [11], and even the spline
case ([12]).

Let us assume (1.3) throughout the paper, and simplify the notation of B,, to

B =B, = B,.

The equations that determine the unknowns ¢; in this particular case will be worked
out in the next section.
The key role in the paper is played by the matrix of data differences

d
(1.4) AT = (ATZ) . AT, =Ty, — T,
=0
and by the signs of its minors
d
(1.5) D; = det (AT;) _,
T

i.e., the signs of the volumes of the d-simplexes, spanned by the vectors
ATy, ATy, ..., AT; 1, AT;yy,...,AT,.

If the vectors AT; do not belong to a proper subspace of R¢, and are not lying on
a polynomial curve of degree < d, the matrix AT is of full rank, and the following
conclusion can be made.
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THEOREM 1.1. Suppose rank AT = d. Then the interpolating curve B exists if
and only if the minors D; are all of the same sign. If B exists it is reqular, and the
parameter values t := (t;)%_, are determined uniquely.

In the plane case, the signs of the D; can be identified by certain angles, as has
been already observed in [10, 8]. More generally, if the data are convex in the discrete
sense, one has

sign (Do) = sign (Dy).

The additional requirements of Theorem 1.1 simply guarantee that the data stay
convex under the translations

T; >T;—AT;, j=i+1,i+2,....d i=12....d—1,

i.e., they are not too twisted.

Let S~ : R¥! — {0,1,...,d} denote the number of strong sign changes in x €
RI*! . Then Theorem 1.1 actually requires that the kernel of AT is spanned by
d

i=0"

z=((-1)'D;)
with
ST (z)=d.

This observation can be extended to the case of deficient rank AT < d, but then the
uniqueness or the regularity of a solution can not be expected. Still the following fact
can be established.

THEOREM 1.2. Let rank AT < d. An interpolating curve B of degree < d can be
found if and only if there exists & € ker AT such that S™(z) = d.

In the setup of Theorem 1.2, all regular B will return the same interpolatory
curve, considered as a set of points. But the speed of moving along the curve will
be different. The additional free parameters should be used to decrease the degree of
the interpolating curve if possible. If the obtained lower-degree curve is unique, the
proof of Theorem 1.1 can be repeated and the conclusion that it is regular can also
be made. Reduction of the degree is not always possible. As an example take a cubic
curve that interpolates five points in R®. If the data are lying on a plane, a cubic is
still needed as a quadratic curve can interpolate four planar points in general.

Although the problem of determining the unknowns ¢; is nonlinear, there is an
efficient and stable way to the numerical solution, given as the following result.

THEOREM 1.3. Suppose that the requirements of Theorem 1.1 are satisfied. The
continuation method [1] will always compute the numerical solution.

Practical evidence shows that the best way is to start the continuation method
as one-step method. This step has to be reduced only if the solution lies near the
boundary of (1.1).

2. The equations. Under the assumption (1.3) the system (1.2) can be rewrit-
ten as

B(ti):Ti, 1=0,1,...,d+1,

where the unknowns are (vector) coefficients of the polynomial curve B, and scalars
(t;)L, that have to satisfy (1.1). But the divided difference on arbitrary d + 2 points
maps a polynomial of degree < d to zero, so

[to,t1,...,tg41]B =0,
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and [to,t1,. .. ,t4+1] should map the data T'; to zero too. Since ¢; are required to be
different, this fact can be written as

d+1 d+1

1
(2.1) Z mTi =0, w(t):= H(t —t),
=0 =0
i.e., d scalar equations for d scalar unknowns ¢1,%s,...,t;. The equations (2.1) are

the only nonlinear part on the way to the interpolatory curve B, and one can effi-
ciently solve them by the continuation method as stated in Theorem 1.3. The final
construction of B then follows the function case and is straightforward.

3. The proofs. The assertions in the introduction seem quite simple, but the
proofs will take several steps. Here is a brief outline:

1. The system (2.1) will be transformed in a form more suitable for the analysis
of the existence and the uniqueness.

2. Tt will be shown that the existence of a unique solution of the system (2.1)
implies that D; should all be of the same sign (with Lemma 3.1 as a part of
the proof).

3. Lemma 3.2 will establish the fact that any solution of (2.1) that satisfies (1.1)
should be simple, and Lemma 3.3 will assure that any such solution could not
be arbitrarily close to the boundary.

4. A proof that the system (2.1) has a unique solution for particular data will
be outlined.

5. The convex homotopy will help to carry over the conclusions from the par-
ticular to the general case in order to complete the proof of Theorem 1.1.

6. The proofs of Theorems 1.2 and 1.3 will complete the section.

As to the first step, let us recall that [to,t1,...,ts+1]1 = 0. So the system (2.1)
can be rewritten as

a+l a+l
3.1 —(T; = Ty) = ——(T'i—To) = 0,
(3.1) > oy @I = Xy @
or
(3.2) (T; — To)H w,
where
1\
(3.3) w:= < - > .
w(ti) i=1
By inserting I = U~'U between the two factors in (3.2), where
1 1 1 1 -1 ... 0
0o 1 ... 0 1 0
U=\ . . . o | e RAFLAHL et = ;
00 ... 1 o 0 ... 1

the equations (3.1) become

(3.4) ATw, =0,
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with
AT = (T; — To)Z ! U~! € R4H!

=1

defined by (1.4), and

d+1

a1

3.5 w,. =Uw = —
(33) . Y]
1=

If at least one of the determinants D; defined in (1.5) is different from zero, then AT
is of full rank d, and the kernel of AT is spanned by the vector

()™= D),
Since wy, should be proportional to it, the nonlinear system (3.4) becomes

d+1

1 .
3.6 =(-1D)¥"*ip, .y, i=1,2,...,d+1
( ) a; W(t]) ( ) i—1 1 y &y ) + )
i.e., d + 1 scalar equations for d + 1 unknowns «, t1,ts, ..., t4.

The form of the system (3.6) is suitable to proceed with the second step of the
proofs. Let o :=0 < t; < --- <ty <tgy1:= 1, and a # 0 be a unique solution of the
system (3.6). Then

and sign (Dy) = sign (). Thus
sign (D;—1) = sign(a), i=1,2,...,d,

if and only if S™(w,) = d. This fact will be established with the help of the following
lemma.

LEMMA 3.1. Let p;, 1 <1i <d, be the interpolating polynomial of degree < d+1
that interpolates the data

_ 0, j:O’]_,...,i_]-,
pz(tj)_{ 1, j=ii+1,...,d+1

at d + 2 distinct points tg < ty < --- < tgy1. Then p; is of degree d+ 1, and the sign
of its leading coefficient is equal to (—1)4+1—%,

Proof. The interpolating conditions imply p; # const, thus p; # 0. By Rolle’s
theorem, p) has at least i — 1 zeros on (o, t;—1) and at least d —i+1 zeros on (¢;, tq41),
i.e., at least d zeros on (tg,tq+1). Since p; does not vanish identically, the degree of p}
is d, and the degree of p; is d + 1. Note that p; must be increasing on (#;_1,%;), and
sign (p}(t;)) = 1. But then sign (p}(ts+1)) = (—1)4*1 7% Since the leading coefficient
of p; has to be of the same sign as p}(t4+1), the lemma has been proved. O

Let p; be the polynomial studied in Lemma 3.1. Its leading coefficient is equal to
the divided difference

[t07t17'-'7td+1]pi = Zpl(‘]
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and the fact

d+l 4
sign — | = (=)t
; w(t))

is confirmed by the conclusion of Lemma 3.1. The first part of the proof of Theorem
1.1 is complete.

Let us continue with the step three of the proofs. If two consecutive equations in
(3.6) are subtracted, the system reads

!
w(t)
A solution of the system (3.7) will be simple if the Jacobian J at that point is non-
singular. A straightforward computation gives J as
d+1
o
i=1

i # g, J<d+1,

(3.7) = (-1 =YDy +Dy), i=1,2,...,d+1, Dgyy :=0.

(3.8) J:=J(t,a) = diag <oﬁ;(ti)

with A := (aij)fjil, and

ti—t;’
= — a . .
aU_ Ztk_tiv l:]7]<d+17
k=0
k#i
1, 7=d+1.

The suggestions in [7] will help us to prove the following lemma.

LEMMA 3.2. The determinant of the matriz A is given as
1
w(to)

det A =d! ad‘ (to — td+1)

Proof. By definition, det A is a sum of terms of the form

(3.9) const H

1
ti—t;’
iz LY

where the total degree of the denominator, viewed as a polynomial in the variables
ty, €=0,1,...,d+1,

is d, but for some terms const could be zero. The terms involving

1 1
(3.10) or ,
ti—t; (t: — ;)

j=1,2,..,d+1, i # ],

could not take part in (3.9). To see this, observe that for fixed i # j, 0 < 4,5 < d,
only the elements

—_
—_

+ other terms

7N
£ 8
S S
£ 8
=
N——
Il
o
~
S
=
SH
SH
=
~
S

ti—ti ti—t;
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in the matrix A are involved. So the contribution of (3.10) to det A is computed as the
determinant of the matrix A where all the other elements in the rows ¢ and j and in
columns i and j are set to zero. But then all the 2 x 2 minors obtained from the rows
1 and 7 vanish identically, and the Laplace expansion shows that this determinant is
equal to zero. A similar argument works for i = d + 1, 7 = 0, too. But then only the
d possible divisors to — t;, 1 = 1,2,...,d, are left, and det A has to be of the form

det A = o y ¢ =ad(t0—td+1).(ct )
w(lo
[1(to —t:)
i=1
where c is a constant independent of ¢;. Since
1
= ———det (diag(to — t;) L A
€T A (to — tay1) et (diag(to — ti)iZy 4).
the sequence of limits t; — tg,ts — to,...,tq — to simplifies ¢ to
1 0 0 0
. 1 2 0 0
c=————det| 1 1 . : = d,
—tq
o 1 1 - d 0
—1 =1 - =1 to—ton

and the lemma is proved. O

LEMMA 3.3. Let D; # 0 be all of the same sign. Then a constant ¢ > 0, depending
on the data D; only can be found, such that for any solution of (3.7) that satisfies
(1.1), the relations

tiy1 —t; >c>0, 1=0,1,...,d,

must hold.

Proof. Without loss of generality, one can assume that sign (o) = sign (D;) > 0.
If a > €9 > 0 for some constant €, clearly ¢;11 — t; > const > 0, since otherwise the
left hand side of (3.7) would be unbounded. Thus ¢; can approach each other only
if « = 0. The last equation in (3.7) then implies w(t4s+1) — 0, and consequently

tqg — tg+1 = 1. Since [to,t1,...,t44+1]1 = 0, summing all equations in (3.7) yields
a
= (-1 d+1D
By TV Do

which implies w(tg) — 0 too, and further #; — t; = 0. Thus at least two t; stay
separated by a constant. Suppose that ¢, 1 < ¢ < d, is the smallest index such that
ty, tp41 are separated, i.e., t; — to, but tp41 — ty > const > 0. Then

11
ti—t; to—t;

(14+0(t; —to)), i< l<y,

and
1 1 1 g
(3.11) 50 = o (1+ZO(ti —tp), i<U(
[T1(t—t) II (to—t;) =0
J:é? Jj=0+1
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Let
d+1
w = H (tj —tg) > (41 — tg)dJrl*Z > const ¢ > 0.
j=l+1
By inserting (3.11) into (3.7), multiplied by w, one computes
a

¢

It — 1)

i

= (=1)*"“w(D;_1 + D;) + higher — order terms, i =0,1,...,/,

[,
=0

and the summing of these equations yields

4
312) > ————
=0 T (t: —t5)

=

= [to,t1,...,t)Ja =wDy; + higher — order terms,

[
=0

a contradiction, since [to,t1,...,t)Ja=0for £ > 1,and Dy #0for 1 < ¢ <d. O
The fourth step of the proofs considers a particular set of data points, taken on
the polynomial curve f(t) := (t*){_, as

T :=f(g;), i=0,1,...,d+1,
where
(3.13) N :=0<m <+ <ng <nNgg1 := 1.
Note that the corresponding determinants

(3.14) * o= det (ATY)-

1#1

could be computed as

Ni+2 Nd+1
D; =d! / dxy / das .. / dxi/ dz;yq / Vi(xy, @, ..., xq)dzg,
70 Uil Ni—1 Ni4+1 Na

where

V(zi,2e,...,2q) = H(xj —x;)

J>i

is the Vandermonde determinant. This implies D > 0 , and rank AT™* = d, since 1;
are ordered by (3.13). The necessary conditions of Theorem 1.1 are met, and one of
the solutions of (2.1) for the particular data is obviously

ti:m, izl,...,d.

In order to complete the proof of Theorem 1.1 for these data, it must be shown that
this is the only solution. The system in its basic form (2.1) is

d+1
(3.15) 77% - -1,2,....,d,
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and the identity [to, t1,...,tq+1]1 = 0 can always be added. But then (3.15) is reduced
to the fact that the vector

(3.16) (w(lt))djo1

should span the kernel of the matrix

i d;d+1
( J )i:O; j=0"

A straightforward computation shows that (3.16) should be proportional to the vector
of the same structure, but with all ¢; being replaced by ;. So t; and n; are equivalent,
and one can simplify further discussion by exchanging the role of the unknowns and
the parameters. Thus suppose t; to be known, and 7; to be determined.

The equations (3.15) imply that the values 7; must be equal to the values p(t;)
of some polynomial p of degree < d, and

(3.17) [to,t1,.. ., tap1]p" =0, €=1,2,....d.
It is easy to see that (3.17) does not, in general, determine the polynomial p uniquely,
even for small d. Take d = 3, and equidistant partition ¢; = ;. Then the divided

difference [to,t1,ts,t3,t4] obviously maps to zero the powers t’, ¢ = 1,2,3, but also
p’, where

1
p(t) :== gt(16 — 45t + 32t7).

However, this p does not produce 7; = p(t;) in the order as required in (3.13) since it
is not monotone on [0, 1].

Let us proceed to show that for a particular choice of ¢; the solution of (3.17) that
satisfies (3.13) is unique. Let 0 < h < 1, and

t, .
ti:Ehv Z:1,2,...,d.

Note p(0) =0, p(1) = 1. Thus p can be expressed as follows

d d-1
p(t) = Zciti, cqg:=1- Zci,
i=1 i=1

and the first equation of (3.17) is satisfied automatically. Let us recall that the divided
difference can also be written as

d+1
z
% f( )dZ = ;RQS <£7tl> = [thtla"'atd+l]fa t; € Ia
oQ =

w(z)

if f is analytical on the set Q C C, I C Q. Here, Res(g; z) denotes the residuum of g
at z. Thus (3.17) can be written as

d+1 Vj
(3.18) > Res (%;tl) -0, (=23,.. . .d
=0
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¢
The fraction - has only isolated singularities in C*, therefore
w

d+1

¢ ¢
ZRes <£;ti) + Res (li;oo) =0,0=2,3,...,d,
=0 w w
and the system (3.18) is simplified to

4
(3.19) Res <%;oo> -0, (=23,....d

1
The rational function — expands at oo as
w

11 —~ 1 (d+1 )
oG = T > 7(—2 h+O(h )).
1=d+3
Also,
ld
(320) pZ(Z) = sz Z Ci1Ciy - - - Ciy-

k=¢ i1+is+...+ip=k

In (3.20), only the terms with & > d+1 will contribute to the residue. Since d+1 > ¢,
the system (3.19) reads

ld
(3.21) > > iy, +O(h) =0, £=2,3,....d.
k=d+1 i1+io+...4+ip=k

But pf(1) = 1, and (3.20) simplifies (3.21) to

d
(3.22)  1-) > i, +O0h) =0, L=dd—1,...,2.
k=l i14ic+... 4=k

First let us consider (3.22) when h — 0. Then the first two equations read

(3.23) 1-cf =0,
and
(3.24) L—cft —def2ey = 0,

and the rest as
(3.25) 1—cf — Ec{flcd_gﬂ + ge(cr, o,y cq—p) =0, L=d—2,d—3,...,2.

Equation (3.23) implies that ¢; = 1 is the only real solution. This is true also for
even d, because ¢; = —1 implies that p is not monotone. But then (3.24) implies
co =0, and (3.25) ¢; = 0, i = 3,4,...,d — 1. A brief look at (3.22) reveals that
ge(cr,cay ... cq—y) involves products that include at least two ¢;, with 2 < i < d — (.
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So the lower triangular nonlinear system (3.23), (3.24), and (3.25) has nonsingular
Jacobian at the limit point A = 0, and the limit solution is

(c1,c2,...,¢ca-1) = (1,0,...,0).

Thus, by the implicit function theorem, there exists hg > 0, such that for all h, 0 <
h < hg, there is a unique monotone solution p of the system (3.17), i.e., p(t) = t,
independently of h. Consequently the system (3.6) has a unique solution (3.13). Note
that this does not contradict the conclusion of Lemma 3.3 since there the data were
constants, but here they are moving towards the boundary together with the solution.

Consider now the general case, the step five of the proofs. Without loss of gen-
erality, one may assume that D; are all positive. Let us join the particular data D7,
defined in (3.14), and the general data D; with a convex homotopy,

D;(\):=(1-=XND;+AD; >0, Xe€]0,1].
Let
d+1

d+1
) - (Co e )T aepal

i=1 =1

w(t;)

so that the system (3.7) is simplified to

H(t,a;)\) = <

H(t,a;)\) =0.

For each fixed A € [0,1] the requirements of Lemma 3.3 are met, so H has no zero
arbitrarily close to the boundary. But the interval [0,1] is compact, and the data
D;(\) depend continuously on A. Thus the term Dy(A) in (3.12) can be bounded
independently of A,

|[De(N)| > inf |Dy(A)| = min |D,(\)| = consty > const > 0,
X€f0,1] X€el0,1]

and the contradiction that proves the Lemma 3.3 holds uniformly. So a compact set
DC{tlto<t1 < - <tg<tgy1} x{a]0<a<x)},

has to exist, such that H does not vanish at the boundary of D for any A € [0,1]. But
then Brouwer’s degree ([2, pp.52-53]) of H is invariant for A € [0,1] on D. In H, only
the data depend on A, and a brief look at the homotopy reveals that its Jacobian is
simply J(t,«), as given in (3.8). This simplifies Brouwer’s degree to

Z sign(detJ(¢,a) ).
(t7o¢) €D, H(t,a;)\):o

But by Lemma 3.2, det J vanishes nowhere in D, and Brouwer’s degree is further
simplified to

+ #{(t,a0)|(t,a) € D, H(t,a;\) =0},

so it provides the exact count of zeroes in D. But the particular problem H (¢, «;0) = 0
has a unique solution, so have all H (¢, a;\).

In order to complete the proof of Theorem 1.1, it remains to show that B, based
upon ¢ that we have just determined, is a regular curve.
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Note that B can also be written as

d+1

B = ZTjéj, éj(t) = w(t)

(t —t;)a(ty)
If B is not regular, then
B(f) = 0 = ATU((:(D)}

for some # € [0, 1]. Since ker AT is spanned by w,, = Uw, given in (3.5) and (3.3), the
vector (&-(f))?:ll should be proportional to w. But then

wmmmz(“@ (0 ) = const.

P—t;  (I—t;)?

for all t; # ¢, which implies that at least two of ¢; are equal, a contradiction that con-
firms the regularity of the interpolating curve. The proof of Theorem 1.1 is complete.

Theorem 1.3 follows from Lemma 3.2. The continuation method ([1]) always leads
to the solution if the Jacobian of the system is globally nonsingular.

Let us finally prove Theorem 1.2. If the interpolating polynomial B exists, then
the corresponding w,, € ker AT, as defined in (3.5), clearly satisfies S™(wy) = d.
On the other hand, if z = (xi)?:o € ker AT can be found such that S™(z) = d,
than z; may replace the right hand side (—1)4*1~D; in (3.6). The existence part of
Theorem 1.1 still carries through, and Theorem 1.2 is proved.

Let us illustrate the last proof by a simple example. Let data be given on a line
in a plane,

s m=(U) =t =t (D= (),

Then
1/2 1 3
AT =35 <2 1 3) ’
and rank AT = 1. Furthermore, the vector £ € ker AT such that S™(z) =d =2 is

given as a parametric family

x:x(u) = (M7_3_2:u71)7 /J/>0

For such an z, the system (3.6) has the solution

B 1 2u(p +2) _ — K
tl—tl(,u) .—m<1— W>7 tQ—tQ(N) ~—t1(ﬂ)+ m’

and the data (3.26) are interpolated by a quadratically parametrized line

_ (1 (=28t — (1 —26)82
B‘¢(1>’ o(t) = 2t5(1 — t2) '

Further more, the curve B is regular iff

! ! (\/3—1)(\/5—1)§u§(\/§+1)(2+\/€).

1— — <ty < —,
V2T R



There is only one free parameter to decrease the degree of B, and ty = t5(2) =
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reduces the parametrisation to the simplest case ¢(t) = ¢. This parametrisation is
regular since it is a unique solution of degree one of the interpolation problem. This
concludes the proofs.

(9]
(10]

[11]

(12]
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