
ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVESJERNEJ KOZAK� AND EMIL �ZAGARyAbstra
t. In this paper, geometri
 interpolation by parametri
 polynomial 
urves is 
onsidered.Dis
ussion is fo
used on the 
ase where the number of interpolated points is equal to d + 2, and ddenotes the degree of the interpolating polynomial 
urve. The interpolation takes pla
e in Rd.Even though the problem is nonlinear, simple ne
essary and suÆ
ient 
onditions for existen
e of thesolution are stated. These 
onditions are entirely geometri
, and do not depend on the asymptoti
analysis. Furthermore, they provide an eÆ
ient and stable way to the numeri
 solution of theproblem.Key words. polynomial 
urve, geometri
 interpolation, existen
e, uniqueness, approximationorderAMS subje
t 
lassi�
ations. 65D05, 65D071. Introdu
tion. Let a sequen
e of data pointsTTTTTTTTT 0; TTTTTTTTT 1; : : : ; TTTTTTTTT r+1 2 Rd ; TTTTTTTTT i 6= TTTTTTTTT i+1;be given. A parametri
 
urve interpolates these points in the geometri
 sense ifthe parameter values at whi
h it passes through the points TTTTTTTTT i are not pres
ribed inadvan
e. In the limiting 
ase of the geometri
 interpolation if two 
onse
utive points
oin
ide, this s
heme leads to the interpolation of a point, and a tangent dire
tionat the same parameter value. Further, threefold interpolation at a point requiresalso the 
urvature to be known there, et
. The threefold interpolation by 
ubi
s inthe plane 
an be tra
ed ba
k to [3℄, the paper that initiated the study of geometri
interpolation. In order to make the proofs of the results simple, only distin
t pointsTTTTTTTTT i will be 
onsidered in this paper. The extension to the os
ulatory 
ase will appearelsewhere.The disadvantage of the geometri
 approa
h is obvious. Namely, the problem of�nding the interpolatory 
urve is nonlinear, so the questions of existen
e, uniqueness,and 
omputation of the solution arise.However, there are important advantages too. Free parameter values at whi
hthe points TTTTTTTTT i are interpolated may raise the approximation order. This fa
t has beenobserved in [3℄, and in many of the subsequent papers. As a bound for the polynomialgeometri
 interpolation, it has been 
onje
tured in [5℄ that a parametri
 polynomial
urve of degree n in d dimensional Eu
lidean spa
e 
an, in general, interpolater + 2 = n+ 1 + �n� 1d� 1�points in Rd , and rea
h the same approximation order. The 
onje
ture has beenproved only for a few parti
ular 
ases. But perhaps the most important bonus ofall is that the geometri
 approa
h provides the basis for the Gm 
ontinuous splines
hemes where the interpolants do not depend on the lo
al parametrisation. This isan important and often-required property in the CAGD appli
ations.� Department of Mathemati
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2 JERNEJ KOZAK AND EMIL �ZAGARSuppose now that the interpolatory 
urve is a parametri
 polynomial 
urveBBBBBBBBBn : [a; b℄! Rdof degree n. Sin
e linear reparametrisation does not 
hange the degree of the polyno-mial, the assumption a := 0 and b := 1 
an be made. Thus the 
onstru
tion of BBBBBBBBBnrequires to determine ti,t0 := 0 < t1 < t2 < : : : < tr < tr+1 := 1;(1.1)su
h that BBBBBBBBBn(ti) = TTTTTTTTT i; i = 0; 1; : : : ; r + 1:(1.2)This is the nonlinear part of the problem. On
e ti are known, it is straightforwardto obtain the 
urve BBBBBBBBBn in any of the well-known forms su
h as B�ezier, Newton orLagrange.In order to keep the number of free parameters equal to the number of the un-knowns, a 
ertain Diophantine equation has to be satis�ed ([4℄). The 
asen = r = d(1.3)turns out to be the simplest to handle ([6℄). Nevertheless, few results 
an be found inthe literature without the assumption that the data points are suÆ
iently dense andtaken from some smooth underlying 
urve. In the plane 
ase (d = 2), some resultsare in
luded in [10, 8, 9℄, and in the spa
e 
ase (d = 3) in [4℄.As it will be shown below, the 
ase n = r = d 
an be worked out without anyasymptoti
 assumptions. Perhaps the methods applied here 
ould be used to studymore 
ompli
ated problems too, su
h as those outlined in [11℄, and even the spline
ase ([12℄).Let us assume (1.3) throughout the paper, and simplify the notation of BBBBBBBBBn toBBBBBBBBB := BBBBBBBBBn = BBBBBBBBBd:The equations that determine the unknowns ti in this parti
ular 
ase will be workedout in the next se
tion.The key role in the paper is played by the matrix of data di�eren
es�T := ��TTTTTTTTT i�di=0; �TTTTTTTTT i := TTTTTTTTT i+1 � TTTTTTTTT i;(1.4)and by the signs of its minors Di := det��TTTTTTTTT j�dj=0j 6=i(1.5)i.e., the signs of the volumes of the d-simplexes, spanned by the ve
tors�TTTTTTTTT 0;�TTTTTTTTT 1; : : : ;�TTTTTTTTT i�1;�TTTTTTTTT i+1; : : : ;�TTTTTTTTT d:If the ve
tors �TTTTTTTTT i do not belong to a proper subspa
e of Rd , and are not lying ona polynomial 
urve of degree < d, the matrix �T is of full rank, and the following
on
lusion 
an be made.



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 3Theorem 1.1. Suppose rank �T = d. Then the interpolating 
urve BBBBBBBBB exists ifand only if the minors Di are all of the same sign. If BBBBBBBBB exists it is regular, and theparameter values ttttttttt := (ti)di=1 are determined uniquely.In the plane 
ase, the signs of the Di 
an be identi�ed by 
ertain angles, as hasbeen already observed in [10, 8℄. More generally, if the data are 
onvex in the dis
retesense, one has sign (D0) = sign (Dd) :The additional requirements of Theorem 1.1 simply guarantee that the data stay
onvex under the translationsTTTTTTTTT j ! TTTTTTTTT j ��TTTTTTTTT i; j = i+ 1; i+ 2; : : : ; d; i = 1; 2; : : : ; d� 1;i.e., they are not too twisted.Let S� : Rd+1 ! f0; 1; : : : ; dg denote the number of strong sign 
hanges in xxxxxxxxx 2Rd+1 . Then Theorem 1.1 a
tually requires that the kernel of �T is spanned byxxxxxxxxx = �(�1)iDi�di=0 ;with S�(xxxxxxxxx) = d:This observation 
an be extended to the 
ase of de�
ient rank �T < d, but then theuniqueness or the regularity of a solution 
an not be expe
ted. Still the following fa
t
an be established.Theorem 1.2. Let rank �T < d. An interpolating 
urve BBBBBBBBB of degree � d 
an befound if and only if there exists xxxxxxxxx 2 ker �T su
h that S�(xxxxxxxxx) = d.In the setup of Theorem 1.2, all regular BBBBBBBBB will return the same interpolatory
urve, 
onsidered as a set of points. But the speed of moving along the 
urve willbe di�erent. The additional free parameters should be used to de
rease the degree ofthe interpolating 
urve if possible. If the obtained lower-degree 
urve is unique, theproof of Theorem 1.1 
an be repeated and the 
on
lusion that it is regular 
an alsobe made. Redu
tion of the degree is not always possible. As an example take a 
ubi

urve that interpolates �ve points in R3 . If the data are lying on a plane, a 
ubi
 isstill needed as a quadrati
 
urve 
an interpolate four planar points in general.Although the problem of determining the unknowns ti is nonlinear, there is aneÆ
ient and stable way to the numeri
al solution, given as the following result.Theorem 1.3. Suppose that the requirements of Theorem 1.1 are satis�ed. The
ontinuation method [1℄ will always 
ompute the numeri
al solution.Pra
ti
al eviden
e shows that the best way is to start the 
ontinuation methodas one-step method. This step has to be redu
ed only if the solution lies near theboundary of (1.1).2. The equations. Under the assumption (1.3) the system (1.2) 
an be rewrit-ten as BBBBBBBBB(ti) = TTTTTTTTT i; i = 0; 1; : : : ; d+ 1;where the unknowns are (ve
tor) 
oeÆ
ients of the polynomial 
urve BBBBBBBBB, and s
alars(ti)di=1 that have to satisfy (1.1). But the divided di�eren
e on arbitrary d+2 pointsmaps a polynomial of degree � d to zero, so[t0; t1; : : : ; td+1℄BBBBBBBBB = 000000000;



4 JERNEJ KOZAK AND EMIL �ZAGARand [t0; t1; : : : ; td+1℄ should map the data TTTTTTTTT i to zero too. Sin
e ti are required to bedi�erent, this fa
t 
an be written asd+1Xi=0 1_!(ti)TTTTTTTTT i = 000000000; !(t) := d+1Yi=0(t� ti);(2.1)i.e., d s
alar equations for d s
alar unknowns t1; t2; : : : ; td. The equations (2.1) arethe only nonlinear part on the way to the interpolatory 
urve BBBBBBBBB, and one 
an eÆ-
iently solve them by the 
ontinuation method as stated in Theorem 1.3. The �nal
onstru
tion of BBBBBBBBB then follows the fun
tion 
ase and is straightforward.3. The proofs. The assertions in the introdu
tion seem quite simple, but theproofs will take several steps. Here is a brief outline:1. The system (2.1) will be transformed in a form more suitable for the analysisof the existen
e and the uniqueness.2. It will be shown that the existen
e of a unique solution of the system (2.1)implies that Di should all be of the same sign (with Lemma 3.1 as a part ofthe proof).3. Lemma 3.2 will establish the fa
t that any solution of (2.1) that satis�es (1.1)should be simple, and Lemma 3.3 will assure that any su
h solution 
ould notbe arbitrarily 
lose to the boundary.4. A proof that the system (2.1) has a unique solution for parti
ular data willbe outlined.5. The 
onvex homotopy will help to 
arry over the 
on
lusions from the par-ti
ular to the general 
ase in order to 
omplete the proof of Theorem 1.1.6. The proofs of Theorems 1.2 and 1.3 will 
omplete the se
tion.As to the �rst step, let us re
all that [t0; t1; : : : ; td+1℄1 = 0. So the system (2.1)
an be rewritten asd+1Xi=0 1_!(ti) (TTTTTTTTT i � TTTTTTTTT 0) = d+1Xi=1 1_!(ti) (TTTTTTTTT i � TTTTTTTTT 0) = 000000000;(3.1)or (TTTTTTTTT i � TTTTTTTTT 0)d+1i=1 !!!!!!!!!;(3.2)where !!!!!!!!! := � 1_!(ti)�d+1i=1 :(3.3)By inserting I = U�1U between the two fa
tors in (3.2), whereU := 0BBB� 1 1 : : : 10 1 : : : 1... ... . . . ...0 0 : : : 1 1CCCA 2 Rd+1;d+1 ; U�1 = 0BBB� 1 �1 : : : 00 1 : : : 0... ... . . . ...0 0 : : : 1 1CCCA ;the equations (3.1) be
ome �T !!!!!!!!!� = 000000000;(3.4)



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 5with �T = (TTTTTTTTT i � TTTTTTTTT 0)d+1i=1 U�1 2 Rd;d+1de�ned by (1.4), and !!!!!!!!!� := U!!!!!!!!! = 0�d+1Xj=i 1_!(tj)1Ad+1i=1 :(3.5)If at least one of the determinants Di de�ned in (1.5) is di�erent from zero, then �Tis of full rank d, and the kernel of �T is spanned by the ve
tor�(�1)d+1�iDi�di=0 :Sin
e !!!!!!!!!� should be proportional to it, the nonlinear system (3.4) be
omes� d+1Xj=i 1_!(tj) = (�1)d+1�iDi�1; i = 1; 2; : : : ; d+ 1;(3.6)i.e., d+ 1 s
alar equations for d+ 1 unknowns �; t1; t2; : : : ; td.The form of the system (3.6) is suitable to pro
eed with the se
ond step of theproofs. Let t0 := 0 < t1 < � � � < td < td+1 := 1, and � 6= 0 be a unique solution of thesystem (3.6). Then Dd = � 1_!(td+1) 6= 0;and sign (Dd) = sign (�). Thussign (Di�1) = sign (�) ; i = 1; 2; : : : ; d;if and only if S�(!!!!!!!!!�) = d. This fa
t will be established with the help of the followinglemma.Lemma 3.1. Let pi, 1 � i � d, be the interpolating polynomial of degree � d+ 1that interpolates the datapi(tj) = � 0; j = 0; 1; : : : ; i� 1;1; j = i; i+ 1; : : : ; d+ 1at d+ 2 distin
t points t0 < t1 < � � � < td+1. Then pi is of degree d+ 1, and the signof its leading 
oeÆ
ient is equal to (�1)d+1�i.Proof. The interpolating 
onditions imply pi 6= 
onst, thus p0i 6= 0. By Rolle'stheorem, p0i has at least i�1 zeros on (t0; ti�1) and at least d� i+1 zeros on (ti; td+1),i.e., at least d zeros on (t0; td+1). Sin
e p0i does not vanish identi
ally, the degree of p0iis d, and the degree of pi is d + 1. Note that p0i must be in
reasing on (ti�1; ti), andsign (p0i(ti)) = 1. But then sign (p0i(td+1)) = (�1)d+1�i. Sin
e the leading 
oeÆ
ientof pi has to be of the same sign as p0i(td+1), the lemma has been proved.Let pi be the polynomial studied in Lemma 3.1. Its leading 
oeÆ
ient is equal tothe divided di�eren
e[t0; t1; : : : ; td+1℄pi = d+1Xj=0 pi(tj)_!(tj) = d+1Xj=i 1_!(tj) ;



6 JERNEJ KOZAK AND EMIL �ZAGARand the fa
t sign0�d+1Xj=i 1_!(tj)1A = (�1)d+1�iis 
on�rmed by the 
on
lusion of Lemma 3.1. The �rst part of the proof of Theorem1.1 is 
omplete.Let us 
ontinue with the step three of the proofs. If two 
onse
utive equations in(3.6) are subtra
ted, the system reads�_!(ti) = (�1)d+1�i(Di�1 +Di); i = 1; 2; : : : ; d+ 1; Dd+1 := 0:(3.7)A solution of the system (3.7) will be simple if the Ja
obian J at that point is non-singular. A straightforward 
omputation gives J asJ := J(ttttttttt; �) = diag� 1_!(ti)�d+1i=1 A;(3.8)with A := (aij)d+1i;j=1, andaij = 8>>>>><>>>>>: �ti � tj ; i 6= j; j < d+ 1;d+1Xk=0k 6=i �tk � ti ; i = j; j < d+ 1;1; j = d+ 1:The suggestions in [7℄ will help us to prove the following lemma.Lemma 3.2. The determinant of the matrix A is given asdetA = d!�d (t0 � td+1) 1_!(t0) :Proof. By de�nition, detA is a sum of terms of the form
onstYi 6=j 1ti � tj ;(3.9)where the total degree of the denominator, viewed as a polynomial in the variablest`; ` = 0; 1; : : : ; d+ 1;is d, but for some terms 
onst 
ould be zero. The terms involving1ti � tj or 1(ti � tj)2 ; i; j = 1; 2; : : : ; d+ 1; i 6= j;(3.10)
ould not take part in (3.9). To see this, observe that for �xed i 6= j, 0 � i; j � d,only the elements� aii aijaji ajj � = �0B� 1tj � ti 1ti � tj1tj � ti 1ti � tj 1CA+ other terms



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 7in the matrix A are involved. So the 
ontribution of (3.10) to detA is 
omputed as thedeterminant of the matrix A where all the other elements in the rows i and j and in
olumns i and j are set to zero. But then all the 2� 2 minors obtained from the rowsi and j vanish identi
ally, and the Lapla
e expansion shows that this determinant isequal to zero. A similar argument works for i = d+ 1; j = 0, too. But then only thed possible divisors t0 � ti; i = 1; 2; : : : ; d, are left, and detA has to be of the formdetA = �d 
dQi=1(t0 � ti) = �d(t0 � td+1) 
_!(t0) ;where 
 is a 
onstant independent of ti. Sin
e
 = 1�d (t0 � td+1) det �diag(t0 � ti)d+1i=1 A�;the sequen
e of limits t1 ! t0; t2 ! t0; : : : ; td ! t0 simpli�es 
 to
 = 1t0 � td+1 det0BBBBB� 1 0 � � � 0 01 2 � � � 0 0... ... . . . ... ...1 1 � � � d 0�1 �1 � � � �1 t0 � td+1
1CCCCCA = d!;and the lemma is proved.Lemma 3.3. Let Di 6= 0 be all of the same sign. Then a 
onstant 
 > 0, dependingon the data Di only 
an be found, su
h that for any solution of (3.7) that satis�es(1.1), the relations ti+1 � ti � 
 > 0; i = 0; 1; : : : ; d;must hold.Proof. Without loss of generality, one 
an assume that sign (�) = sign (Di) > 0.If � � �0 > 0 for some 
onstant �0, 
learly ti+1 � ti � 
onst > 0, sin
e otherwise theleft hand side of (3.7) would be unbounded. Thus ti 
an approa
h ea
h other onlyif � ! 0. The last equation in (3.7) then implies _!(td+1) ! 0, and 
onsequentlytd ! td+1 = 1. Sin
e [t0; t1; : : : ; td+1℄1 = 0, summing all equations in (3.7) yields�_!(t0) = (�1)d+1D0;whi
h implies _!(t0) ! 0 too, and further t1 ! t0 = 0. Thus at least two ti stayseparated by a 
onstant. Suppose that `; 1 � ` � d, is the smallest index su
h thatt`; t`+1 are separated, i.e., t` ! t0, but t`+1 � t` � 
onst > 0. Then1ti � tj = 1t0 � tj (1 +O(ti � t0)); i � ` < j;and 1_!(ti) = 1Q̀j=0j 6=i (ti � tj) 1d+1Qj=`+1(t0 � tj) (1 + X̀i=0 O(ti � t0)); i � `:(3.11)



8 JERNEJ KOZAK AND EMIL �ZAGARLet w := d+1Yj=`+1(tj � t0) � (t`+1 � t`)d+1�` � 
onstd+1�` > 0:By inserting (3.11) into (3.7), multiplied by w, one 
omputes�Q̀j=0j 6=i (ti � tj) = (�1)`�iw(Di�1 +Di) + higher� order terms; i = 0; 1; : : : ; `;and the summing of these equations yieldsX̀i=0 �Q̀j=0j 6=i (ti � tj) = [t0; t1; : : : ; t`℄� = wD` + higher� order terms;(3.12)a 
ontradi
tion, sin
e [t0; t1; : : : ; t`℄� = 0 for ` � 1, and D` 6= 0 for 1 � ` � d.The fourth step of the proofs 
onsiders a parti
ular set of data points, taken onthe polynomial 
urve fffffffff(t) := (tk)dk=1 asT �i := fffffffff(�i); i = 0; 1; : : : ; d+ 1;where �0 := 0 < �1 < � � � < �d < �d+1 := 1:(3.13)Note that the 
orresponding determinantsD�i := det (�T �i )dj=0j 6=i(3.14)
ould be 
omputed asD�i = d! Z �1�0 dx1 Z �2�1 dx2 : : : Z �i�i�1 dxi Z �i+2�i+1 dxi+1 : : : Z �d+1�d V (x1; x2; : : : ; xd)dxd;where V (x1; x2; : : : ; xd) =Yj>i(xj � xi)is the Vandermonde determinant. This implies D�i > 0 , and rank �T � = d, sin
e �iare ordered by (3.13). The ne
essary 
onditions of Theorem 1.1 are met, and one ofthe solutions of (2.1) for the parti
ular data is obviouslyti = �i; i = 1; : : : ; d:In order to 
omplete the proof of Theorem 1.1 for these data, it must be shown thatthis is the only solution. The system in its basi
 form (2.1) isd+1Xi=0 �ì_!(ti) = 0; ` = 1; 2; : : : ; d;(3.15)



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 9and the identity [t0; t1; : : : ; td+1℄1 = 0 
an always be added. But then (3.15) is redu
edto the fa
t that the ve
tor � 1_!(ti)�d+1i=0(3.16)should span the kernel of the matrix��ij�d;d+1i=0;j=0 :A straightforward 
omputation shows that (3.16) should be proportional to the ve
torof the same stru
ture, but with all ti being repla
ed by �i. So ti and �i are equivalent,and one 
an simplify further dis
ussion by ex
hanging the role of the unknowns andthe parameters. Thus suppose ti to be known, and �i to be determined.The equations (3.15) imply that the values �i must be equal to the values p(ti)of some polynomial p of degree � d, and[t0; t1; : : : ; td+1℄p` = 0; ` = 1; 2; : : : ; d:(3.17)It is easy to see that (3.17) does not, in general, determine the polynomial p uniquely,even for small d. Take d = 3, and equidistant partition ti = i4 . Then the divideddi�eren
e [t0; t1; t2; t3; t4℄ obviously maps to zero the powers t`; ` = 1; 2; 3, but alsop`, where p(t) := 13 t(16� 45t+ 32t2):However, this p does not produ
e �i = p(ti) in the order as required in (3.13) sin
e itis not monotone on [0; 1℄.Let us pro
eed to show that for a parti
ular 
hoi
e of ti the solution of (3.17) thatsatis�es (3.13) is unique. Let 0 < h� 1, andti = idh; i = 1; 2; : : : ; d:Note p(0) = 0; p(1) = 1. Thus p 
an be expressed as followsp(t) = dXi=1 
iti; 
d := 1� d�1Xi=1 
i;and the �rst equation of (3.17) is satis�ed automati
ally. Let us re
all that the divideddi�eren
e 
an also be written asI�
 f(z)!(z)dz = d+1Xi=0 Res�f! ; ti� = [t0; t1; : : : ; td+1℄f; ti 2 I;if f is analyti
al on the set 
 � C ; I � 
. Here, Res(g; z) denotes the residuum of gat z. Thus (3.17) 
an be written asd+1Xi=0 Res�p!̀ ; ti� = 0; ` = 2; 3; : : : ; d:(3.18)



10 JERNEJ KOZAK AND EMIL �ZAGARThe fra
tion p!̀ has only isolated singularities in C � , therefored+1Xi=0 Res�p!̀ ; ti�+Res�p!̀ ;1� = 0; ` = 2; 3; : : : ; d;and the system (3.18) is simpli�ed toRes�p!̀ ;1� = 0; ` = 2; 3; : : : ; d:(3.19)The rational fun
tion 1! expands at 1 as1!(z) = 1zd+2 + 1Xi=d+3 1zi �d+ 12 h+O(h2)� :Also, p`(z) = ` dXk=` zk Xi1+i2+:::+i`=k 
i1
i2 : : : 
i` :(3.20)In (3.20), only the terms with k � d+1 will 
ontribute to the residue. Sin
e d+1 > `,the system (3.19) reads` dXk=d+1 Xi1+i2+:::+i`=k 
i1
i2 : : : 
i` +O(h) = 0; ` = 2; 3; : : : ; d:(3.21)But p`(1) = 1, and (3.20) simpli�es (3.21) to1� dXk=l Xi1+i2+:::+i`=k 
i1
i2 : : : 
i` +O(h) = 0; ` = d; d� 1; : : : ; 2:(3.22)First let us 
onsider (3.22) when h! 0. Then the �rst two equations read1� 
d1 = 0;(3.23)and 1� 
d�11 � d
d�21 
2 = 0;(3.24)and the rest as1� 
1̀ � `
`�11 
d�`+1 + g`(
1; 
2; : : : ; 
d�`) = 0; ` = d� 2; d� 3; : : : ; 2:(3.25)Equation (3.23) implies that 
1 = 1 is the only real solution. This is true also foreven d, be
ause 
1 = �1 implies that p is not monotone. But then (3.24) implies
2 = 0, and (3.25) 
i = 0; i = 3; 4; : : : ; d � 1. A brief look at (3.22) reveals thatg`(
1; 
2; : : : ; 
d�`) involves produ
ts that in
lude at least two 
i, with 2 � i � d � `.



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 11So the lower triangular nonlinear system (3.23), (3.24), and (3.25) has nonsingularJa
obian at the limit point h = 0, and the limit solution is(
1; 
2; : : : ; 
d�1) = (1; 0; : : : ; 0):Thus, by the impli
it fun
tion theorem, there exists h0 > 0, su
h that for all h; 0 �h � h0, there is a unique monotone solution p of the system (3.17), i.e., p(t) = t,independently of h. Consequently the system (3.6) has a unique solution (3.13). Notethat this does not 
ontradi
t the 
on
lusion of Lemma 3.3 sin
e there the data were
onstants, but here they are moving towards the boundary together with the solution.Consider now the general 
ase, the step �ve of the proofs. Without loss of gen-erality, one may assume that Di are all positive. Let us join the parti
ular data D�i ,de�ned in (3.14), and the general data Di with a 
onvex homotopy,Di(�) := (1� �)D�i + �Di > 0; � 2 [0; 1℄:LetHHHHHHHHH(ttttttttt; �;�) := � �_!(ti)�d+1i=1 � �(�1)d+1�i�Di�1(�) +Di(�)��d+1i=1 ; � 2 [0; 1℄;so that the system (3.7) is simpli�ed toHHHHHHHHH(ttttttttt; �;�) = 000000000:For ea
h �xed � 2 [0; 1℄ the requirements of Lemma 3.3 are met, so HHHHHHHHH has no zeroarbitrarily 
lose to the boundary. But the interval [0; 1℄ is 
ompa
t, and the dataDi(�) depend 
ontinuously on �. Thus the term D`(�) in (3.12) 
an be boundedindependently of �,jD`(�)j � inf�2[0;1℄ jD`(�)j = min�2[0;1℄ jD`(�)j = 
onst` � 
onst > 0;and the 
ontradi
tion that proves the Lemma 3.3 holds uniformly. So a 
ompa
t setD � fttttttttt j t0 < t1 < � � � < td < td+1g � f� j 0 � � <1)g;has to exist, su
h that HHHHHHHHH does not vanish at the boundary of D for any � 2 [0; 1℄. Butthen Brouwer's degree ([2, pp.52-53℄) of HHHHHHHHH is invariant for � 2 [0; 1℄ on D. In HHHHHHHHH , onlythe data depend on �, and a brief look at the homotopy reveals that its Ja
obian issimply J(ttttttttt; �), as given in (3.8). This simpli�es Brouwer's degree toX(ttttttttt;�)2D;HHHHHHHHH(ttttttttt;�;�)=0 sign� detJ(ttttttttt; �) �:But by Lemma 3.2, det J vanishes nowhere in D, and Brouwer's degree is furthersimpli�ed to � # f(ttttttttt; �) j (ttttttttt; �) 2 D; HHHHHHHHH(ttttttttt; �;�) = 0g;so it provides the exa
t 
ount of zeroes in D. But the parti
ular problemHHHHHHHHH(ttttttttt; �; 0) = 0has a unique solution, so have all HHHHHHHHH(ttttttttt; �;�).In order to 
omplete the proof of Theorem 1.1, it remains to show that BBBBBBBBB, basedupon ttttttttt that we have just determined, is a regular 
urve.



12 JERNEJ KOZAK AND EMIL �ZAGARNote that BBBBBBBBB 
an also be written asBBBBBBBBB = d+1Xj=0 TTTTTTTTT j`j ; `j(t) := !(t)(t� tj) _!(tj) :If BBBBBBBBB is not regular, then _BBBBBBBBB(~t) = 0 = �TU( _̀i(~t))d+1i=1for some ~t 2 [0; 1℄. Sin
e ker�T is spanned by !!!!!!!!!� = U!!!!!!!!!, given in (3.5) and (3.3), theve
tor �`i(~t)�d+1i=1 should be proportional to !!!!!!!!!. But then_!(ti) _̀i(~t) = � _!(~t)~t� ti � !(~t)(~t� ti)2� = 
onstfor all ti 6= ~t, whi
h implies that at least two of ti are equal, a 
ontradi
tion that 
on-�rms the regularity of the interpolating 
urve. The proof of Theorem 1.1 is 
omplete.Theorem 1.3 follows from Lemma 3.2. The 
ontinuation method ([1℄) always leadsto the solution if the Ja
obian of the system is globally nonsingular.Let us �nally prove Theorem 1.2. If the interpolating polynomial BBBBBBBBB exists, thenthe 
orresponding !!!!!!!!!� 2 ker�T , as de�ned in (3.5), 
learly satis�es S�(!!!!!!!!!�) = d.On the other hand, if xxxxxxxxx = (xi)di=0 2 ker�T 
an be found su
h that S�(xxxxxxxxx) = d,than xi may repla
e the right hand side (�1)d+1�iDi in (3.6). The existen
e part ofTheorem 1.1 still 
arries through, and Theorem 1.2 is proved.Let us illustrate the last proof by a simple example. Let data be given on a linein a plane, TTTTTTTTT 0 = � 00� ; TTTTTTTTT 1 = 13 � 11� ; TTTTTTTTT 2 = 12 � 11� ; TTTTTTTTT 3 = � 11� :(3.26)Then �T = 16 � 2 1 32 1 3� ;and rank �T = 1. Furthermore, the ve
tor xxxxxxxxx 2 ker�T su
h that S�(xxxxxxxxx) = d = 2 isgiven as a parametri
 familyxxxxxxxxx = xxxxxxxxx(�) := (�;�3� 2�; 1) ; � > 0:For su
h an xxxxxxxxx, the system (3.6) has the solutiont1 = t1(�) := 11� �  1�s2�(�+ 2)3(�+ 1) ! ; t2 = t2(�) := t1(�) +r �6(�+ 1)(�+ 2) ;and the data (3.26) are interpolated by a quadrati
ally parametrized lineBBBBBBBBB = �� 11� ; �(t) := (1� 2t22)t� (1� 2t2)t22t2(1� t2) :Further more, the 
urve BBBBBBBBB is regular i�1� 1p2 � t2 � 1p2 ; �p3� 1��p2� 1� � � � �p2 + 1��2 +p6� :



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 13There is only one free parameter to de
rease the degree of BBBBBBBBB, and t2 = t2(2) = 12redu
es the parametrisation to the simplest 
ase �(t) = t. This parametrisation isregular sin
e it is a unique solution of degree one of the interpolation problem. This
on
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