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Abstract In this paper, the problem of geometric interpolation of space data is
considered. Cubic polynomial parametric curve is supposed to interpo-
late five points in three dimensional space. It is a case of a more general
problem, i.e., the conjecture about the number of points in R? which
can be interpolated by parametric polynomial curve of degree n. The
necessary and sufficient conditions are found which assure the existence
and the uniqueness of the interpolating polynomial curve.
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1. Introduction

Interpolation by parametric polynomial curves is an important ap-
proximation procedure in computer graphics, computer aided geometric
design, computer aided modeling, mathematical modeling,.... The word
geometric refers to the fact that the interpolating curve is not forced to
pass the points at given parameter values but is allowed to take its “mi-
nimum norm shape”. It is well known too, that this kind of interpolation
can lead to interpolation schemes of high order accuracy. In [4], the au-
thors conjectured that a parametric polynomial curve of degree n in R?
can, in general, interpolate
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data points. Some results by means of the asymptotic analysis can
be found in [2], [5] and [8], but there are only a few results on this
conjecture which do not involve asymptotic analysis, e.g., [3], [6] and [7].
In this paper the conjecture is proved to be true in the simplest nontrivial
space case. More precisely, the cubic polynomial curve is found, which
interpolates five points in R®. It is clear that this can not be done in
general. The necessary and sufficient conditions on data points, which
ensure the existence of the unique interpolating polynomial curve are
provided. These conditions are purely geometric and do not require any
asymptotic approach.

The problem which was described above, can be formalized as follows.
Suppose five points T'; € R3, j =0,1,2,3,4, are given. It is assumed
that T'; # Tj41. Is there a unique regular cubic parametric polynomial
curve B, which satisfies the interpolating conditions

B(t]):ij ]:0717273747 (1)

where ty < t1 < ty < t3 < t4 are unknown parameter values? Clearly, ¢
and t4 can, e.g., be chosen as ty := 0 and 4 := 1, since one can always
apply a linear reparametrization. Thus the only unknown parameters
left are t1, t3 and t3 which have to lie in a domain

D .= {t = (tl,tg,tg,); O=:tg <t <ty <t3<ty:= 1}. (2)

Recall that B is a vector polynomial in R?, and its coefficients are also
unknown. But once ¢;, j = 1,2,3, are determined, any classical inter-
polation scheme on arbitrary four points trivially produces coefficients
of B. Thus the main problem is how to determine the parameters ¢;.
Since the interpolating polynomial curve is cubic, the problem is clearly
nonlinear and one can expect the system of nonlinear equations. One of
the ways how to obtain it is described in the next section.

2. The system of nonlinear equations

A polynomial curve, which satisfies (1), is cubic, and any divided
difference on five points maps it to zero, i.e.,

[t07t17t27t37t4]B =0. (3>

Since t; are different, the equations (3) can also be written as

S
2 tj)B(tj)=07 (4)
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where
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By (1), the equation (4) rewrites to

LI

= olt)

T; =0, (5)

i.e., the system of three nonlinear equations for ¢y, t5 and t3. Further-
more,

[to. t1,ta, t3, 14T}, =

(6)
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and one of the terms in (5) can be always canceled by subtracting (6) for
any k. This leads to scalar equations for the unknown ¢;. More precisely,
if (6) is subtracted from (5) with k& = 4, e.g., the equation

I
=0

is obtained. Cross multiplication of (7) by (T's —T4) and scalar product
by (Ty —T4) lead to

: (]1; (To—Ty) x (T3 —T4))- (T2 —T4)
w(to)
+d}él) (T —Ty) x (T3 —Ty))-(Ty —T4) =0. (8)

Since (@ x b) - ¢ = det(a, b, ¢), a simple manipulation by determinants
simplifies (8) to
w(to) 1 det(ATg, ATQ, AT3)
w(tl) det(ATl, ATQ, AT3)
where AT := T —Tj. Two other nonlinear scalar equations can be

derived in a similar way with different k applied in (7) , and we finally
get the system

=0,

w(to)
t1,t9,13; = 1 =0
fl( 1502, 3,041) W(tl) +1+o )
w(ts)
t1,t9,13; = ——F =0 9
fa(ti,ta, t3; a) (o) + ag ; (9)
w(t
fl(tl,tg,tg;ag) = ( 4) +1 + a3 = 0,

w(ts)



where
. det(ATo, AT‘Q7 AT3>
T Qet(ATy, AT, AT3)
i det(ATl, ATQ, ATg)
Y27 Qet(ATy, ATy, AT>)
N det(ATg, ATl, AT3)
- det(ATg, ATl, ATQ)

The system (9) can be shortly written as
F(t;0) == [fi(t. ta. B33 1), fa(t1 o, t ), falty, ta, g5 a3)] T =0,

where @ := [, a9, a3]”. The main theorem of this paper is now the
following.

(10)

a3

Theorem 1 A cubic parametric curve through five points T'; € R3, j =
0,1,2,3,4, is uniquely determined if and only if the components of a,
defined by (10), are all positive.

3. The proof of the theorem

In this section the proof of the Theorem 1 will be given.
If the system (9) has a unique solution in D defined by (2), then a
straightforward computation shows that

wlto) . w(ts) w(ts)

o) S Glt) ot)

This implies that «;, ¢ = 1,2,3, must be positive and the first part of
the theorem is proved.

The proof that the positivity of the components of a is also sufficient
condition, will be split into two main parts.

< —1.

>0, and

a) A unique solution of the system for a particular vector a* will be
established.

b) The fact that a unique solution exists will be extended to all ad-
missible vectors a by the aim of the homotopy theory.

a) Consider a particular system (9) first, i.e.,

F(t;a*) =0, o :=]3,1,3]". (11)
Its polynomial equivalent on D reads
pi(ti,ta,t3) == fi(ti,te,t3;3)w(ty) =0,
p2(ti,ta, t3) = fa(t1,ta,t3;1) w(to) =0, (12)
p3(ti,ta, t3) = f3(t1,t2,t3:3) w(t3) = 0.
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One of the possible approaches to such polynomial systems is to use
resultants as a tool that brings the system to a higher degree single
variable case. Let Res(p,q,x) denote the resultant of polynomials p,
and ¢, with respect to the variable z. It is straightforward to compute

Res(Res(p1, p2, t2), Res(p2, ps, t2), t3) = 1641° (1 — 1)'% q(t1),
where
q(ty) := 102415 — 30727 + 59521 — 67843 + 439217 — 15124, + 189.

Since t1 # 0,1, the only candidates for the first component of the solution
t are the six roots of the polynomial ¢, i.e.,

1 3 24+:V/17£3v21
47 47 4 )

The second equation in (12) is obviously linear in t5, and it is easy to

deduce that only the root ¢; = 1 produces the (unique) solution

1 2 317

of the system (11) in D.

b) In order to extend the fact from a) to the general @, consider the
linear homotopy

H(it,a;)\):=(1-)\N)F(t;a") + \F(t; a) (14)
A particular form of the Brouwer’s degree of a differentiable map G
reads
degree(G,D) = > sign(det(J(G)(¢))), (15)
tep, G()=0

where J is a Jacobian of G with respect to . It gives some information
about the number of the zeros of G in D. In particular, if

degree(G,D) = £1,

G has at least one zero in D. Even more ([1, p. 52]), if (15) is applied
to H, the Brouwer’s degree is invariant for all A € [0, 1], provided

H(t,o;\)#£0, teaD, Xelo,1]. (16)

It is also important to note that if J(G) in (15) is globally nonsingular,
then Brouwer’s degree gives the exact number of zeros of G in D. In our
case the Jacobian

OH(t,a;\) OF(t,a")

THE)@) = =, ot
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really is globally nonsingular on D, since its determinant at any point
t € D simplifies to

6 (to — ta)” (ta —t1) (ta — t2) (tsg — t3)

(tr —to) (t2 —to) (t3 — to) (t2 — t1)* (ts — t1)* (3 — 1)°
Since for A = 0 the homotopy (14) becomes our particular system (11)
for which a unique solution has been established, and

degree(H (e, a*;0),D) = —1,

the Brouwer’s degree of H will be —1 for all A € [0,1], if (16) holds.
Unfortunately, H is not differentiable on dD. Even more, it is not
continuous and unbounded on some points of the boundary. Thus the
following lemma is needed.

< 0.

Lemma 1.1 There is a compact set DCD which contains particular
solution (13) and H(t,a;\) # 0 for t € 9D, A € [0,1] and o with
positive components.

Proof: Let us prove first that H(¢,a;)\) can not have any solution
arbitrary close to D. Note that

to=1ty, t3 <ts, or to<ty, ty=1ts
implies Ho(t, a; \) # 0, thus H is either unbounded or
Hs(t,a; \) = (1—)Nai + \as >0,
since the components of a* and a are positive. Thus only the relations
to=11 <ta<tz3=1t4 or to<t <ty <it3<iy

are left to examine. Since tg = 0 < 1 = 14, there are only two possibilities
in the first case, tg = t; < to and to < t3 = t4. This implies obvious
contradictions

H(t,o5\) = (1 —N)aj + \ag >0,

and
H;3(t,o5)\) = (1 — N)aj + \az > 0.

In the second case one has tg < t1 =ty <tz <ty, tg <t1 <ty =13 <ty
or tg < t1 = ty = t3 < t4. But now Hy or Hj3 is unbounded. So all
the zeros of H are strictly in D. But D is an open set, thus there is
a compact set D C D with a smooth boundary which contains all the
zeros of H in its interior.

The proof of the last lemma also completes the proof of the Theorem
1.
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4. Numerical example

The results from the previous sections will be illustrated by a numeri-
cal example here. Let us suppose that the interpolating points are taken
from the helix

f(n) = [cos 3n,sin 3n, 3n]".

Let T; = f(n;), where n; = j/4, j = 0,1,2,3,4. It is a matter of
straightforward computation to verify that «;, ¢ = 1,2,3, defined by
(10), are positive and the conditions of the Theorem 1 are met. The
solution of the nonlinear system (9) can be obtained by applying, e.g.,
Newton’s method or any of the continuation methods. This gives the
solution

¢ = [0.2313,0.5000, 0.7687]” .

Now one can use any classical interpolation scheme on arbitrary four
interpolation points T';, which gives the interpolating polynomial curve

3.041#3 — 4.823t2 — 0.207t + 1

B(t) = | —0.216#> — 3.384 2 + 3.741¢
1.172¢3 — 1.759¢% + 3.586

Figure 1. The interpolated data points and parametric polynomial curve.
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