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t In this paper, the problem of geometri
 interpolation of spa
e data is
onsidered. Cubi
 polynomial parametri
 
urve is supposed to interpo-late �ve points in three dimensional spa
e. It is a 
ase of a more generalproblem, i.e., the 
onje
ture about the number of points in Rd whi
h
an be interpolated by parametri
 polynomial 
urve of degree n. Thene
essary and suÆ
ient 
onditions are found whi
h assure the existen
eand the uniqueness of the interpolating polynomial 
urve.Keywords: Parametri
 
urve, geometri
 interpolation1. Introdu
tionInterpolation by parametri
 polynomial 
urves is an important ap-proximation pro
edure in 
omputer graphi
s, 
omputer aided geometri
design, 
omputer aided modeling, mathemati
al modeling,. . . . The wordgeometri
 refers to the fa
t that the interpolating 
urve is not for
ed topass the points at given parameter values but is allowed to take its \mi-nimum norm shape". It is well known too, that this kind of interpolation
an lead to interpolation s
hemes of high order a

ura
y. In [4℄, the au-thors 
onje
tured that a parametri
 polynomial 
urve of degree n in Rd
an, in general, interpolate n+ 1 + �n� 1d� 1�1



2data points. Some results by means of the asymptoti
 analysis 
anbe found in [2℄, [5℄ and [8℄, but there are only a few results on this
onje
ture whi
h do not involve asymptoti
 analysis, e.g., [3℄, [6℄ and [7℄.In this paper the 
onje
ture is proved to be true in the simplest nontrivialspa
e 
ase. More pre
isely, the 
ubi
 polynomial 
urve is found, whi
hinterpolates �ve points in R3 . It is 
lear that this 
an not be done ingeneral. The ne
essary and suÆ
ient 
onditions on data points, whi
hensure the existen
e of the unique interpolating polynomial 
urve areprovided. These 
onditions are purely geometri
 and do not require anyasymptoti
 approa
h.The problem whi
h was des
ribed above, 
an be formalized as follows.Suppose �ve points TTTTTTTTT j 2 R3 , j = 0; 1; 2; 3; 4, are given. It is assumedthat TTTTTTTTT j 6= TTTTTTTTT j+1. Is there a unique regular 
ubi
 parametri
 polynomial
urve BBBBBBBBB, whi
h satis�es the interpolating 
onditionsBBBBBBBBB(tj) = TTTTTTTTT j; j = 0; 1; 2; 3; 4; (1)where t0 < t1 < t2 < t3 < t4 are unknown parameter values? Clearly, t0and t4 
an, e.g., be 
hosen as t0 := 0 and t4 := 1, sin
e one 
an alwaysapply a linear reparametrization. Thus the only unknown parametersleft are t1, t2 and t3 whi
h have to lie in a domainD := fttttttttt := (t1; t2; t3); 0 =: t0 < t1 < t2 < t3 < t4 := 1g: (2)Re
all that BBBBBBBBB is a ve
tor polynomial in R3 , and its 
oeÆ
ients are alsounknown. But on
e tj, j = 1; 2; 3, are determined, any 
lassi
al inter-polation s
heme on arbitrary four points trivially produ
es 
oeÆ
ientsof BBBBBBBBB. Thus the main problem is how to determine the parameters tj.Sin
e the interpolating polynomial 
urve is 
ubi
, the problem is 
learlynonlinear and one 
an expe
t the system of nonlinear equations. One ofthe ways how to obtain it is des
ribed in the next se
tion.2. The system of nonlinear equationsA polynomial 
urve, whi
h satis�es (1), is 
ubi
, and any divideddi�eren
e on �ve points maps it to zero, i.e.,[t0; t1; t2; t3; t4℄BBBBBBBBB = 000000000: (3)Sin
e tj are di�erent, the equations (3) 
an also be written as4Xj=0 1_!(tj)BBBBBBBBB(tj) = 000000000; (4)



Geometri
 Interpolation of Data in R3 3where !(t) := 4Yj=0(t� tj); _! := d!dt :By (1), the equation (4) rewrites to4Xj=0 1_!(tj)TTTTTTTTT j = 000000000; (5)i.e., the system of three nonlinear equations for t1, t2 and t3. Further-more, [t0; t1; t2; t3; t4℄TTTTTTTTT k = 4Xj=0 1_!(tj)TTTTTTTTT k = 000000000; (6)and one of the terms in (5) 
an be always 
an
eled by subtra
ting (6) forany k. This leads to s
alar equations for the unknown tj. More pre
isely,if (6) is subtra
ted from (5) with k = 4, e.g., the equation3Xj=0 1_!(tj)(TTTTTTTTT j � TTTTTTTTT 4) = 000000000 (7)is obtained. Cross multipli
ation of (7) by (TTTTTTTTT 3�TTTTTTTTT 4) and s
alar produ
tby (TTTTTTTTT 2 � TTTTTTTTT 4) lead to1_!(t0)((TTTTTTTTT 0 � T4T4T4T4T4T4T4T4T4)� (TTTTTTTTT 3 � TTTTTTTTT 4)) � (TTTTTTTTT 2 � TTTTTTTTT 4)+ 1_!(t1) ((TTTTTTTTT 1 � T4T4T4T4T4T4T4T4T4)� (TTTTTTTTT 3 � TTTTTTTTT 4)) � (TTTTTTTTT 2 � TTTTTTTTT 4) = 000000000: (8)Sin
e (aaaaaaaaa � bbbbbbbbb) � 








 = det(aaaaaaaaa; bbbbbbbbb; 








), a simple manipulation by determinantssimpli�es (8) to _!(t0)_!(t1) + 1 + det(�TTTTTTTTT 0;�TTTTTTTTT 2;�TTTTTTTTT 3)det(�TTTTTTTTT 1;�TTTTTTTTT 2;�TTTTTTTTT 3) = 000000000;where �TTTTTTTTT j := TTTTTTTTT j+1 � TTTTTTTTT j . Two other nonlinear s
alar equations 
an bederived in a similar way with di�erent k applied in (7) , and we �nallyget the system f1(t1; t2; t3;�1) := _!(t0)_!(t1) + 1 + �1 = 0;f2(t1; t2; t3;�2) := � _!(t4)_!(t0) + �2 = 0; (9)f1(t1; t2; t3;�3) := _!(t4)_!(t3) + 1 + �3 = 0;



4where �1 := det(�TTTTTTTTT 0;�TTTTTTTTT 2;�TTTTTTTTT 3)det(�TTTTTTTTT 1;�TTTTTTTTT 2;�TTTTTTTTT 3) ;�2 = det(�TTTTTTTTT 1;�TTTTTTTTT 2;�TTTTTTTTT 3)det(�TTTTTTTTT 0;�TTTTTTTTT 1;�TTTTTTTTT 2) ; (10)�3 = det(�TTTTTTTTT 0;�TTTTTTTTT 1;�TTTTTTTTT 3)det(�TTTTTTTTT 0;�TTTTTTTTT 1;�TTTTTTTTT 2) :The system (9) 
an be shortly written asFFFFFFFFF (ttttttttt;���������) := [f1(t1; t2; t3;�1); f2(t1; t2; t3;�2); f3(t1; t2; t3;�3)℄T = 000000000;where ��������� := [�1; �2; �3℄T . The main theorem of this paper is now thefollowing.Theorem 1 A 
ubi
 parametri
 
urve through �ve points TTTTTTTTT j 2 R3 , j =0; 1; 2; 3; 4, is uniquely determined if and only if the 
omponents of ���������,de�ned by (10), are all positive.3. The proof of the theoremIn this se
tion the proof of the Theorem 1 will be given.If the system (9) has a unique solution in D de�ned by (2), then astraightforward 
omputation shows that_!(t0)_!(t1) < �1; _!(t4)_!(t0) > 0; and _!(t4)_!(t3) < �1:This implies that �i, i = 1; 2; 3, must be positive and the �rst part ofthe theorem is proved.The proof that the positivity of the 
omponents of ��������� is also suÆ
ient
ondition, will be split into two main parts.a) A unique solution of the system for a parti
ular ve
tor ���������� will beestablished.b) The fa
t that a unique solution exists will be extended to all ad-missible ve
tors ��������� by the aim of the homotopy theory.a) Consider a parti
ular system (9) �rst, i.e.,FFFFFFFFF (ttttttttt;����������) = 000000000; ���������� := [3; 1; 3℄T : (11)Its polynomial equivalent on D readsp1(t1; t2; t3) := f1(t1; t2; t3; 3) _!(t1) = 0;p2(t1; t2; t3) := f2(t1; t2; t3; 1) _!(t0) = 0; (12)p3(t1; t2; t3) := f3(t1; t2; t3; 3) _!(t3) = 0:



Geometri
 Interpolation of Data in R3 5One of the possible approa
hes to su
h polynomial systems is to useresultants as a tool that brings the system to a higher degree singlevariable 
ase. Let Res(p; q; x) denote the resultant of polynomials p,and q, with respe
t to the variable x. It is straightforward to 
omputeRes(Res(p1; p2; t2);Res(p2; p3; t2); t3) = 16 t101 (1� t1)10 q(t1);whereq(t1) := 1024 t61 � 3072 t51 + 5952 t41 � 6784 t31 + 4392 t21 � 1512 t1 + 189:Sin
e t1 6= 0; 1, the only 
andidates for the �rst 
omponent of the solutionttttttttt are the six roots of the polynomial q, i.e.,14 ; 34 ; 2� ip17� 3p214 :The se
ond equation in (12) is obviously linear in t2, and it is easy todedu
e that only the root t1 = 14 produ
es the (unique) solutionttttttttt = �14 ; 24 ; 34�T (13)of the system (11) in D.b) In order to extend the fa
t from a) to the general ���������, 
onsider thelinear homotopyHHHHHHHHH(ttttttttt; ���������;�) := (1� �)FFFFFFFFF (ttttttttt;����������) + �FFFFFFFFF (ttttttttt;���������) (14)A parti
ular form of the Brouwer's degree of a di�erentiable map GGGGGGGGGreads degree(GGGGGGGGG;D) = Xttttttttt2D;GGGGGGGGG(ttttttttt)=000000000 sign(det(J(GGGGGGGGG)(ttttttttt))); (15)where J is a Ja
obian of GGGGGGGGG with respe
t to ttttttttt. It gives some informationabout the number of the zeros of GGGGGGGGG in D. In parti
ular, ifdegree(GGGGGGGGG;D) = �1;GGGGGGGGG has at least one zero in D. Even more ([1, p. 52℄), if (15) is appliedto HHHHHHHHH, the Brouwer's degree is invariant for all � 2 [0; 1℄, providedHHHHHHHHH(ttttttttt; ���������;�) 6= 000000000; ttttttttt 2 �D; � 2 [0; 1℄: (16)It is also important to note that if J(GGGGGGGGG) in (15) is globally nonsingular,then Brouwer's degree gives the exa
t number of zeros of GGGGGGGGG in D. In our
ase the Ja
obianJ(HHHHHHHHH)(ttttttttt) := �HHHHHHHHH(ttttttttt; ���������;�)�ttttttttt = �FFFFFFFFF (ttttttttt; ����������)�ttttttttt



6really is globally nonsingular on D, sin
e its determinant at any pointttttttttt 2 D simpli�es to6 (t0 � t4)3 (t4 � t1) (t4 � t2) (t4 � t3)(t1 � t0) (t2 � t0) (t3 � t0) (t2 � t1)2 (t3 � t1)2 (t3 � t2)2 < 0:Sin
e for � = 0 the homotopy (14) be
omes our parti
ular system (11)for whi
h a unique solution has been established, anddegree(HHHHHHHHH(�; ����������; �);D) = �1;the Brouwer's degree of HHHHHHHHH will be �1 for all � 2 [0; 1℄, if (16) holds.Unfortunately, HHHHHHHHH is not di�erentiable on �D. Even more, it is not
ontinuous and unbounded on some points of the boundary. Thus thefollowing lemma is needed.Lemma 1.1 There is a 
ompa
t set eD � D whi
h 
ontains parti
ularsolution (13) and HHHHHHHHH(ttttttttt; ���������;�) 6= 000000000 for ttttttttt 2 � eD, � 2 [0; 1℄ and ��������� withpositive 
omponents.Proof: Let us prove �rst that HHHHHHHHH(ttttttttt; ���������;�) 
an not have any solutionarbitrary 
lose to �D. Note thatt0 = t1; t3 < t4; or t0 < t1; t3 = t4implies HHHHHHHHH2(ttttttttt; ���������;�) 6= 0, thus HHHHHHHHH2 is either unbounded orHHHHHHHHH2(ttttttttt; ���������;�) = (1� �)����������2 + ����������2 > 0;sin
e the 
omponents of ���������� and ��������� are positive. Thus only the relationst0 = t1 � t2 � t3 = t4 or t0 < t1 � t2 � t3 < t4are left to examine. Sin
e t0 = 0 < 1 = t4, there are only two possibilitiesin the �rst 
ase, t0 = t1 < t2 and t2 < t3 = t4. This implies obvious
ontradi
tions HHHHHHHHH1(ttttttttt; ���������;�) = (1� �)����������1 + ����������1 > 0;and HHHHHHHHH3(ttttttttt; ���������;�) = (1� �)����������3 + ����������3 > 0:In the se
ond 
ase one has t0 < t1 = t2 < t3 < t4, t0 < t1 < t2 = t3 < t4or t0 < t1 = t2 = t3 < t4. But now HHHHHHHHH1 or HHHHHHHHH3 is unbounded. So allthe zeros of HHHHHHHHH are stri
tly in D. But D is an open set, thus there isa 
ompa
t set eD � D with a smooth boundary whi
h 
ontains all thezeros of HHHHHHHHH in its interior.The proof of the last lemma also 
ompletes the proof of the Theorem1.
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al exampleThe results from the previous se
tions will be illustrated by a numeri-
al example here. Let us suppose that the interpolating points are takenfrom the helix fffffffff(�) = [
os 3�; sin 3�; 3 �℄T :Let TTTTTTTTT j = f(�j), where �j = j=4, j = 0; 1; 2; 3; 4. It is a matter ofstraightforward 
omputation to verify that �i, i = 1; 2; 3, de�ned by(10), are positive and the 
onditions of the Theorem 1 are met. Thesolution of the nonlinear system (9) 
an be obtained by applying, e.g.,Newton's method or any of the 
ontinuation methods. This gives thesolution ttttttttt = [0:2313; 0:5000; 0:7687℄T :Now one 
an use any 
lassi
al interpolation s
heme on arbitrary fourinterpolation points TTTTTTTTT j , whi
h gives the interpolating polynomial 
urveBBBBBBBBB(t) = 24 3:041 t3 � 4:823 t2 � 0:207 t + 1�0:216 t3 � 3:384 t2 + 3:741 t1:172 t3 � 1:759 t2 + 3:586 t 35 :

Figure 1. The interpolated data points and parametri
 polynomial 
urve.
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