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Abstract

In this paper, planar parametric Hermite cubic interpolants with small cur-
vature variation are studied. By minimization of an appropriate approximate
functional, it is shown that a unique solution of the interpolation problem
exists, and has a nice geometric interpretation. The best solution of such a
problem is a quadratic geometric interpolant. The optimal approximation
order 4 of the solution is confirmed. The approach is combined with strain
energy minimization in order to obtain G1 cubic interpolatory spline.
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1. Introduction

In [2] the author studied Hermite interpolation by planar rational cubic
Bézier curves. A particular attention was paid to a specific class of such
objects that reproduce circle arcs, probably the most often used curves in
practice. Since in such applications the change in the curvature is more
important than its magnitude, a new measure of the quality of the shape of
the curve that involves the derivative of its curvature was introduced. For
circle arcs, the value of such a functional is zero, but more importantly, such
an approach is geometric in contrast to a usual variational one.

A good polynomial approximation of curves is important since in some
applications only parametric polynomial objects are appropriate. This is es-
pecially true for geometric interpolation schemes, where not much is known
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on rational case (see [4, 6] e.g.). It is well known that geometric interpola-
tion is independent of parameterization and provides interpolants with high
approximation order and pleasant shape. There are several papers dealing
with this topic (see [5] and the references therein, e.g.).

In this paper, cubic parametric Hermite polynomial planar interpolatory
curves with small curvature variation are studied. By minimization of an
appropriate approximate functional, it is shown that a unique solution exists
and can be constructed in a purely geometric way. Furthermore, asymptoti-
cally the best solution of such a problem is a quadratic geometric interpolant.
The optimal approximation order of the solution is confirmed. This approach
can be combined with strain energy minimization in order to obtain G1 cubic
interpolatory spline.

2. Main problem

Suppose that we are given two distinct points p0,p1 ∈ R
2 together with

the corresponding tangent directions d0,d1 ∈ R
2, ‖d0‖2 = ‖d1‖2 = 1. We

are looking for a solution of the standard Hermite interpolation problem

b(0) = p0, b(1) = p1, b′(0) = α0 d0, b′(1) = α1 d1, (1)

where b : [0, 1] → R
2 is a cubic parametric polynomial curve and α0, α1 are

positive reals. As it is very well known, this problem has a unique solution,
provided α0 and α1 are given in advance. They are usually used as free shape
parameters, since they influence the shape of the curve. There are several
approaches on how to choose suitable parameters α0 and α1. In most cases,
minimization of an appropriate functional is applied (approximate strain en-
ergy, e.g., [7, 8, 10, 11]). As it was proposed in [2], one can model a curve by
minimizing its curvature derivative. Then it is natural to minimize

∫ 1

0

(κ′(t))
2
dt (2)

over all possible choices of α0 and α1. Here κ denotes the curvature of the
curve b. Since these two parameters are involved in (2) in a highly nonlinear
way, one may consider to linearize it. A similar idea as for the minimization
of the bending energy will be used ([7]). Namely, if the assumption, that a
particular parameterization is close to the arc-length one, is used, then (2)
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is approximately
∫ 1

0

(

(b′(t) × b′′(t))
′
)2
dt =

∫ 1

0

(b′(t) × b′′′(t))
2
dt. (3)

Here, and in the rest of the paper, x × y := x1y2 − x2y1 denotes the planar
vector product.

If b is written in the Bézier form, i.e.,

b(t) =

3
∑

j=0

bj B
3
j (t),

where bj are Bézier control points and B3
j are cubic Bernstein polynomials,

then the assumptions (1) simplify b to

b(t) = p0B
3
0(t) +

(

p0 +
1

3
α0 d0

)

B3
1(t) +

(

p1 −
1

3
α1 d1

)

B3
2(t) + p1B

3
3(t).

(4)
Using known facts about derivatives of Bézier curves,

b′(t) = α0 d0B
2
0(t) + (3 ∆p0 − α0 d0 − α1 d1)B

2
1(t) + α1 d1B

2
2(t),

b′′′(t) = 6 (α0 d0 + α1 d1 − 2 ∆p0) ,

where ∆p0 := p1 − p0, the functional (3) becomes

f(α0, α1) :=

∫ 1

0

(b′(t) × b′′′(t))
2
dt

= 12
(

α2
0 α

2
1 (d0 × d1)

2 + 4α2
0 (d0 × ∆p0)

2 + 4α2
1 (d1 × ∆p0)

2

− 2α2
0 α1 (d0 × d1) (d0 × ∆p0) + 2α0 α

2
1 (d0 × d1) (d1 × ∆p0)

+ 4α0 α1 (d0 × ∆p0) (d1 × ∆p0)
)

. (5)

Let us simplify the notation by introducing

c0,1 := d0 × d1, cj := dj × ∆p0, j = 0, 1,

and let D := {(α0, α1) ∈ R
2| α0 > 0, α1 > 0}. Now the extrema of the above

functional are given as solutions of the normal system

f1(α0, α1) := α0 α
2
1 c

2
0,1 + 4α0 c

2
0 − 2α0 α1 c0,1 c0 + α2

1 c0,1 c1 + 2α1c0 c1 = 0,

f2(α0, α1) := α2
0 α1 c

2
0,1 + 4α1 c

2
1 + 2α0 α1 c0,1 c1 − α2

0 c0,1 c0 + 2α0 c0 c1 = 0.
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Figure 1: Admissible tangent directions.

The above nonlinear system can be solved analytically by using resultants.
Namely, the resultant

Res(f1, f2, α1) =

= 3 c20
(

α2
0 c

2
0,1 + 2α0 c0,1 c1 + 8 c21

)

(c0,1 α0 + c1) (c0,1 α0 + 2 c1)α0 = 0

implies three possible admissible solutions for α0, i.e.,

α0 = 0, α0 = −
c1

c0,1
, α0 = −2

c1

c0,1
.

It is straightforward to see that the corresponding solutions for α1 are

α1 = 0, α1 =
c0

c0,1
, α1 = 2

c0

c0,1
.

The first solution does not lie in D. The cylindrical decomposition of the
inequalities f(α0, α1) > 0, α0 > 0, α1 > 0, reveals α0 > 0, α1 > 0 and





α0c0

α1
+ c1 6= 0 or c0,1 +

c1

α0
+

√

−3

(

α0c0 + α1c1

α0α1

)2

6=
c0

α1



 .
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The last possibility can be clearly omitted, and a simple computation yields

f(α0,−
α0c0

c1
) =

12α2
0c

2
0(α0c0,1 + 2 c1)

2

c21
.

Thus f ≥ 0 on D, and f(α0, α1) = 0 at the only global minimum in D,

α0 = −2
c1

c0,1
, α1 = 2

c0

c0,1
. (6)

It lies in D if and only if c0 c0,1 > 0 and c1 c0,1 < 0. Thus we have proved the
following theorem.

Theorem 1. Let c0 c0,1 > 0 and c1 c0,1 < 0. Then the functional (3) has a

unique global minimum in D and it is reached at (6).

The assumptions of Thm. 1 have a simple geometric interpretation. Let
ϕ0 := ∠(d0,∆p0) and ϕ1 := ∠(d1,∆p0), where ∠(a, b) is the angle between
a and b. Then the assumptions of the theorem are fulfilled if and only if
the vectors d0 and d1 point to opposite sides of the line with the directional
vector ∆p0 and ϕ0 + ϕ1 < π (see Fig. 1).

Examples of curves with a minimal curvature variation are shown in
Fig. 2, together with their curvature plots.

3. Asymptotic analysis

A natural question arises: which is asymptotically the best cubic curva-
ture variation minimizing curve?

Suppose that data are sampled from a regular convex planar curve g,
g : [0, h] → R

2. Since g is regular at g(0), one can further assume that

g(x) =

(

x

y(x)

)

, (7)

where

y(x) :=
∞
∑

j=2

gj x
j .

Note that this can be achieved by using a particular reparameterization on
the first component of the curve, translation and rotation. Since g is convex,
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Figure 2: Left: Variation minimizing curves (black solid) and particular cubic interpolants
from [2] (gray dashed) for two sets of data. Right: Corresponding curvature plots.

g2 6= 0. Now the data become

p0 = g(0) = (0, 0)T ,

p1 = g(h) = (h, y(h))T ,

d0 = g′(0) = (1, 0)T , (8)

d1 = g′(h) =
1

√

1 + (y′(h))2
(1, y′(h))

T
,

∆p0 = g(h) − g(0) = (h, y(h))T .

Note that here and throughout this section the “dash” notation will denote
a derivative with respect to the particular new parameter, introduced in (7).
Consequently,

α0 = −2
y(h) − h y′(h)

y′(h)
= h+

g3

2 g2

h2 +
4 g2 g4 − 3 g2

3

4 g2
2

h3 + O(h4),

α1 = 2
√

1 + y′(h)2
y(h)

y′(h)
= h−

g3

2 g2
h2 +

(

2g2
2 −

4 g2 g4 − 3 g2
3

4 g2
2

)

h3 + O(h4).
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We can now follow [1] and [5] to establish that the approximation of g by
a polynomial curve b, given by (4) and (8), is fourth order accurate. It is
enough to show that ∆bj = hvj + O(h2), vj 6= 0, j = 0, 1, 2, ∆2bj = O(h2),
j = 0, 1 and ∆3b0 = O(h3). But a straightforward computation reveals

∆bj =

(

1

3
0

)

h + O(h2), j = 0, 1, 2,

∆2bj =





−
g3

6 g2
g2

3



h2 + O(h3), j = 0, 1,

∆3b0 = 0.

Note that the last equation follows from ∆3b0 = −2∆p0 + α0d0 + α1d1 = 0.
But this is precisely the relation b3 = b0+3(b2−b1), that guarantees that the
leading coefficient of a cubic Bézier curve is zero. This yields the following
theorem.

Theorem 2. The best cubic curvature variation minimizing curve is a qua-

dratic geometric interpolant with an optimal approximation order 4.

For more details on geometric interpolation and asymptotic analysis con-
sider [9, 1, 5].

4. Generalization

Since curvature variation has an important influence on the shape of a
curve, a natural idea arises to combine the considered functional (3) with the
strain energy minimization in order to obtain better curves. Furthermore,
thus also a spline interpolation problem can be considered.

Let us define the problem more precisely. Suppose that data points

pj ∈ R
2, j = 0, 1, . . . , n,

with pj 6= pj+1 and associated interpolation parameters

tj ∈ R, j = 0, 1, . . . , n, t0 < t1 < · · · < tn,

are given. We will assume that the interpolation parameters are prescribed
(usually they are derived from data points, e.g., by the centripetal, chord
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length or α-parameterization, see [3]). Our goal is to find a G1 continuous
parametric spline curve s : [t0, tn] → R

2 such that

si := s|[ti−1,ti] ∈ P3, i = 1, 2, . . . , n,

si(tk) = pk, k = i− 1, i, i = 1, 2, . . . , n,

s′

i(tk) = αi,k−i+1 dk, k = i− 1, i, i = 1, 2, . . . , n,

where αi,k−i+1 > 0 are unknown scalars, dk are normalized tangent direction
vectors, and P3 is the space of planar parametric polynomials of degree ≤ 3.

To shorten the notation, let us define α := (αi,k−i+1)
n,i

i=1,k=i−1 ∈ R
2n, and

c01,i := di−1 × di, c0,i := di−1 × ∆pi−1, c1,i := di × ∆pi−1.

In the paper [7], the approximate strain energy minimization approach
for such a problem was analyzed in detail, and a closed form solution with
nice geometrical properties was found. Combining the strain energy and the
curvature variation gives the functional

ϕT (α) := w1

∫ tn

t0

‖κ(t)‖2 dt+ w2

∫ tn

t0

(κ′(t))
2
dt.

Note that appropriate weights w1 and w2 need to be added since the sum-
mands differ in magnitudes. The strain energy is practically never analyzed
in such a form, and besides, a minimization of such a functional would result
in a highly nonlinear problem.

Thus the idea is to apply a combination of functional approximation
approaches from [7] and the preceding sections. This results in the functional

ϕSC(α) := w1

∫ tn

t0

‖s′′(t)‖2 dt+ w2

∫ tn

t0

(s′(t) × s′′′(t))
2
dt. (9)

Note that by [7] the problem can be studied locally. Therefore the combined
functional (9) can be rewritten as

ϕSC(α) =

n
∑

i=1

ϕSC,i(αi,0, αi,1),

where

ϕSC,i(αi,0, αi,1) := w1

∫ ti

ti−1

‖s′′

i (t)‖
2 dt+ w2

∫ ti

ti−1

(s′

i(t) × s′′′

i (t))
2
dt, (10)
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and si denotes the polynomial segment of s on [ti−1, ti].
But the problem is still too hard to tackle, thus by [7] another approxi-

mation is applied to the first summand in (10) to obtain
∫ ti

ti−1

‖s′′

i (t)‖
2 dt ≈

2

∆ti−1

ψi(α),

where

ψi(α) :=

∥

∥

∥

∥

1

∆ti−1
∆pi−1 − αi,0 di−1

∥

∥

∥

∥

2

+

∥

∥

∥

∥

αi,1 di −
1

∆ti−1
∆pi−1

∥

∥

∥

∥

2

.

Note that a reparameterization is needed in the second summand in (10),

∫ ti

ti−1

(s′

i(t) × s′′′

i (t))
2
dt =

(

1

∆ti−1

)7 ∫ 1

0

(s′

i(u) × s′′′

i (u))
2
du.

Therefore, by applying the explicit forms of functionals in [7, Thm. 2] and
(5), we obtain the final form of the combined functional

ϕSC,i(αi,0, αi,1) =
2w1

(∆ti−1)3

(

(∆ti−1)
2
(

α2
i,0 + α2

i,1

)

− 2 ∆ti−1(αi,0 di−1 + αi,1 di)∆pi−1 + 2 ‖∆pi−1‖
2
)

+ 12w2
1

(∆ti−1)7

(

α2
i,0α

2
i,1c

2
01,i + 4α2

i,0c
2
0,i + 4α2

i,1c
2
1,i

− 2α2
i,0αi,1c01,ic0,i + 2αi,0α

2
i,1c01,ic1,i + 4αi,0αi,1c0,ic1,i

)

. (11)

Recall that the first and the second summand of the combined functional
(11) have unique minima, that can be given in explicit forms, when considered
separately. But the combined functional is much more complicated, and the
problem of finding its minima is much harder. Fortunately, the homotopy
method paves the way to the solution. By using the linear homotopy Γ1 +
λΓ2, λ ∈ [0, 1], where Γ1 and Γ2 denote the first and the second summand of
the functional ϕSC,i, respectively, we can follow the solution from the explicit
minimum of Γ1 ([7, Thm. 2]) to the minimum of the combined functional (11).

5. Examples

Let us conclude the paper by some examples. Take a unit circle first
and sample 3 points p0 = (1, 0)⊤, p1 = (0, 1)⊤, p2 = (−1, 0)⊤, and the cor-
responding tangents d0 = (0, 1)⊤, d1 = (−1, 0)⊤, d2 = (0,−1)⊤. In Fig. 3
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the circle arc (dashed) and the interpolant, obtained by curvature variation
minimization (gray, thick) are shown, together with the corresponding cur-
vatures. In Fig. 4, steps in obtaining the solution of the combined method
by homotopy are demonstrated. The homotopy starts at the solution, ob-
tained by strain energy minimization, and follows it until the solution of the
combined method is obtained. The final curve is indistinguishable from the
circle arc. The equidistant parameterization is used.

The curvature variation minimizing spline is in fact parabolic. But it gives
a more pleasant approximation than the strain energy minimizing spline. The
combined method with weights w1 = w2 = 1 yields a similar result, but the
curve is cubic and gives a better approximation than the curvature variation
minimizing spline.
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Figure 3: Approximation of a circle arc (dashed) by curvature variation minimizing curve
(solid) together with the corresponding curvature plots (right).

10



-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

1

2

3

4

Figure 4: Geometric interpolation of data, sampled from a circle, by using a combined
method. The homotopy starts at a solution, obtained by strain energy minimization (solid
gray), and proceeds through two solutions at parameter values λ ∈ {0.2, 0.4} (dashed) to
the final solution (thick black). In the right-hand side figure, the corresponding curvature
plots are shown.
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As the final example, let us consider the data taken from a nonconvex
curve

f(t) =
(

t3 − t+ 1) sin t, t cos t
)T
, t ∈ [0, 1]. (12)

Since the curve is not convex, the optimal solution might not exist, and in
this case one has to divide a curve into two (or more) pieces. It is easy to see
that (12) has an inflection point at the parameter value t0 ≈ 0.3678. Fig. 5
shows geometric interpolants and its curvature profile for the case where the
curve f has been divided into two pieces at the inflection point f(t0) while
Fig. 6 shows similar geometric interpolants for the case where f has been
divided at f (0.48). Note that in the later case the existence conditions from
Thm. 1 are still satisfied.
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Figure 5: Geometric interpolants (solid) of nonconvex curve (12) (dashed) in the case when
the curve has been divided into two parts at the point f (t0) (left) and its corresponding
curvature profile (right).
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Figure 6: Geometric interpolants (solid) of nonconvex curve (12) (dashed) in the case when
the curve has been divided into two parts at the point f (0.48) (left) and its corresponding
curvature profile (right).
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