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CLOSED FORM FORMULA FOR THE NUMBER OF
RESTRICTED COMPOSITIONS
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Abstract
In this paper, compositions of a natural number are studiégge number of restricted compositions is
given in a closed form, and some applications are presented.
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1. Introduction

Compositions and partitions of a natural numimefrequently appear in research
and in practical applications. Although the number of cosifians or partitions,
satisfying particular requirements, can be obtained frbairtgenerating functions,
this is a serious drawback, since it requires symbolic cdatfmnal facilities, exact
computations, and because of computational complexitylied. In this paper, we
present a closed form formula for the number of restricteshasitions, and give
some applications of the results.

Let us be more precise. The list of natural numkgr&hich sum up to a natural
numbem, is an integer composition @ The set of all such lists, where the ordering of
the summands matters, is the set of all integer compositibnsThe set of restricted
integer compositions afis the subset of all compositions that satisfy some addition
restrictions, e.g., on the number of summands, on the valfissmmands, ...Let
a,b,ne Nwitha < b < n. LetC(n, a, b) denote the number of compositionapsuch
that summands are natural numbers, boundedsas tj < b, for alli. Furthermore, let
C(n, k, a, b) denote the number of those restricted compositioms where the number
of summands is equal tg

k
Dti=n ast<b j=12...k
i=1
Clearly,
L2l
C(n,a,b) = C(n,k, a,b).
SH
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Itis trivial to prove thatC(n) := C(n, 1,n) = 2"* andC(n, k) := C(n,k, 1,n) = ({_3).
There are also known formulas for the special cases

L3
C(n,k,a,n) = (n - IT(ajlk - l), C(n,a,n) = Z C(n,k, a, n).
k=1

Also an obvious recursive relation for the general case

n-a
C(n,k a,b) = Z C(i,k-1,ab)

i=n-b

is right at hand. Nevertheless, the generating functiom&aown for bothC(n, k, a, b)
andC(n, a, b). They are of the form ¢, 6])

(Za 1-— Zb—a+1 1

k
and ——, 1
l -7 ) 1 _ Za 1_i;+1 ( )

respectively. We are also interested in a closed-form féeinfior the number of
compositions ofi with more than one maximal (or minimal) element. We will deno
them by Maxf) and Min{), respectively. Again, there are the generating functions
known forC(n) — Max(n) andC(n) — Min(n) and are of the form

o0 i 2 o0 i 2
ey (2 A
(1-2) ;(1—22+ZJ+1) and (1-2) ;(1_2_21-) :
respectively (]).
It is quite easy to obtain closed form formulas at leasG(n, 1, b) andC(n, a, b),

a> 1. Namely, by )

1 (e
mZZC(n,l,b)Zn.
—7 n=0
Since
1 1-z - ,
= =(1- 272
1_211%2 1-2z+2+1 ( Z);(Z )

(-2 i 2(_1)1 (;)Zij 71 210+1)

i=0 j=0
the codficient atz" becomes
C(n,1,b) =g(n,b)—g(n-1,b),

. _ ji i-j
g(n,b) : izj:( 1) (j)z .

i+jb=n

where
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Similarly C(n,a,b) = g(n,a,b) - g(n—-1,a,b),a> 1, where

anab= Y cu(]()

i,j,¢
i+j(a-1)+¢(b-a+1)=n
But it seems that deriving an explicit formula f@(n, k, a, b) is a far more diicult
problem.

The paper is organized as follows. In Sectidrtlosed form formulae for the
number of restricted compositions and restricted parnt#tiare obtained. They are
used as a basis for studying two related problems in Se8tidhe paper is concluded
by some examples in Sectidn

2. Restricted compositions

In this section, our aim is to find a combinatorial closed¥foexpression for
C(n,k, a, b).

Tueorem 2.1. Leta< b <nand|g| <k < LgJ To each composition of n assign
a vectori = (ip,is,...,Ip), Where j denotes the frequency of the number j in the
composition. Moreover, let

n—k- 32 ..(c - 1)ic
J_ 9

b b
aj=n-k(j-1)- > (= j+D)ic. B :=k= Y i ;=

(=j+1 (=j+1

j=23,...,b.Then

b
(@ C(nk 1b)= Z l_[( 12 J)

ir=ay,i3,...ip
max0.a;}<ij<min{g;,y;}

(b) C(n,kahb)=C(n-k@-1).k1,b-(a-1)).

(c) n e N and kat(b-2a) -n € N, then An, k, a, b) = (n_IT(ajlk_l)'

k-1 k-1

Proor. At first, note that the frequency of number Inis Z?zzé’ig and so the number
of summands in the composition is

b

k(i) :=n- Z(f - D, )

(=2

ﬁ("(" 3 ,)

(=2

Furthermore, there are exactly
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different compositions with the same vectoince the number of summands has to
bek, the only admissible compositions are those W(if) = k. Therefore, the relations

b b b
[k— if](j—l)zn—Zﬁgzk—Zi[zO, i=23,...,b,
(= (=] =]

J

have to be satisfied. With the help & (we obtain the appropriate ranges for numbers
i

max0,aj} <ij <min{Bj,yj}, 3<j<b, i2i=a2=7>.

The first formula is therefore proven. In order to show thagdditional condition,
which requires the summands in the composition to be at éggalstes not increase the
difficulty of the problem, let us define a function

k
f :{(tl,...,tk), Zti =na<t sb}—>
i=1

k
ﬁ{(sl,...,sﬁ), Zs =n—k(a—l),1ss,—sb—(a—l)},

i=1
fritute.. ) (t-(a-1).t-(a-1),....t-(a-1)),
which is clearly a bijection and thus(n,k,a,b) = C(n - k(a — 1),k,1,b— (a - 1)).

To prove the last statement of the theorem, assOnek, a, b) = C(m, k, az, m). Then
m = n+ k(m-b) anda, = a+ m—-b. Hence

m-Xb-n ,,_kat(®-d-n
T k-1 PT K—1 .
If me N anda, € Ny, thenC(m, k, ap, m) is well defined and it follows
C(n. k. a,b) = C(m k, a2, m) = C(m~ kap, k, 0,m~ ka) = (n _ kka_+ 1k . 1).

O

This result can be used to derive some interesting progatieestricted composi-
tions.

CoroLrary 2.2. The following formulae hold true:

n L3]
C(nk.1,2)= (n s k), cni12= Y (n'f ) = (” . k),
=r 0
L3

C(nk,a,a+ 1) = (n —kka)’ C(na,a+1)= Z (n _kka)

k=31
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Suppose now that one is interested in restricted partitiofilse list of natural
numbers, which sum up to and where the ordering of summands is not important,
is the set of integer partitions of The partitions, where the number of summands is
equal tok and where they are bounded betwaemdb, will be denoted byP(n, k, a, b).

The following corollary follows directly from Theore 1.

Cororrary 2.3. Letl s a<b<nand|f| <k < L’—;J To each patrtition of n

assign a vector = (i, i3,...,ip), Wwhere | denotes the frequency of the number j in
the partition. Moreover, letj, 8j andy;, j = 2,3,...,b, be as in Theorerd.1. Then
(@ P(n.k1b)= > 1,

i2=Q2,i3,...,Ip
max0,aj}<ij<min{Bj,y;}

(b) P,k ab)=Pn-k@-1).k1b-(a-1)).

3. Two related problems

It is interesting to consider the problem of counting the positions, where more
than one maximal (or minimal) summand exists. An applicatidl be given in the
last section. Using Theoretl, one can prove the following theorem.

Tueorem 3.1. Let Max(n) denote the number of all compositions of n, such that
there are at least two maximal summands, andMét(n) denote the number of all
compositions of n, such that there are at least two minimaireands. Then

k+Vi

Vi

L3) L8] n-iv
Max(n) = 1+ Z Z (

i=2 vi=2 k:"%.‘

IR (

)C(n—ivi,k,l,i—l),

k+Vi

Min(n) = Z Z

i=1 v—2k=sign-iv) * !

)C(n— ivi, K i+1,n—in).

Proor. Let us denote the value of maximal summands bpd the frequency dfin

the composition by;. If i = 1, then there is exactly one appropriate composition. Let
nowi € {2, 3{’—2‘J} andy; € {2, 3{%} Consider now the summands, which
are smaller than and denote the number of these summands byk(i, v;). Clearly
Hj—'” <k < n-iv;. Thenthere ar€(n—ivj, k, 1,i—1) different possible compositions
among them. But now the maximal summands could be arrangaatth the sequence
of summands, which implief”") possibilities of where to set these maximal

Vi

summands.
To prove the second formula, letlenote the value of minimal summands. There-
forei ¢ {1,2,...,[2J}, andv; € {2,3,...,|"|}. Let nowk denote the number of

summands which are greater thatf n —iv; = 0, thenk = 0 and there is exactly one
such composition. Suppose now- iv; > 0. If [r];—'lvj = 0, there is no appropriate
composition, containing; summands, otherwisek can be any number between 1
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and [%J Further, there are exact(ﬁiV‘)C(n —ivi,k i + 1,n — iv;) compositions,
containingy; summands andk summands greater than O

TasLe 1. Values Max()) and Min) for n < 13.

n 112|3]4|5| 6| 78 9 10 | 11 12 13
Max(n) |0|0]|0|1|3| 8 |17|36| 72 | 144| 286 | 569 | 1133
Min(n) |0 1|1|5|8|21|44|94|197| 416|857 | 1766 | 3621

Let Maxc(n) (Minc(n)) denote the number of compositionsmfsuch that there is
exactly one maximal (minimal) summand, respectively.

Since Maxf) + Maxc(n) = C(n) = 2™ and Min) + Minc(n) = C(n), Max(n)
and Min() can be computed also via Mg) and Minc(n).

Cororrary 3.2. LetMax(n) andMin(n) be as in Theorer.1. Then

>S5

n —i
Maxc(n) =
i=2 k

1=

(k+1)C(n—i,k 1,i— 1),
1

ol

— —

S

n 1J
Ming(n) = Z Z (k+1)C(n—i,ki+1n-i).

i=1 k=sign-i)

by

Proor. The expressions can be obtained similarly as in the proohebfem3.1. 0O

Although it seems easier to obtain Maxénd Min{) from Maxc(n) and Minc(n),
let us note, that the time complexity increases this way.

The next important question is the asymptotic behavior ok(vpand Min() for
large integers. Numerical examples and Tabléndicate the following conjecture.

Consecture 3.3. LetMax(n) andMin(n) be as in Theoreri.1 Then

Max(n+1) . Min(n+1)
noeo  Max(n)  noe  Min(n)

4. Examples

An interesting application of Marj arises in numerical analysis, in particular in
asymptotic analysis of the geometric Lagrange interpatgdroblem by Pythagorean-
hodograph (PH) curvesX(] 3]). Here the number of cases of the problem considered,
that need to be studied, can be significantly reduced by kmgpWiax() in advance.
More precisely, if the geometric interpolation (sé§ E.g.) by PH curves of degree
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is considered, the unknown interpolating parameters= 1,2,...,n— 1, have to lie
in

D= {(ti MleR"tgi=0<ty<tp<--<tpy<l= tn}.
It turns out that the interpolation problem requires thdysis.of a particular nonlinear
system of equations involving the unknotyonly at the boundary ab. Quite clearly,
if the point inR"! is to be on the boundary @b, at least two consecutitghave to
coincide (but not all of them, sindg = 0 andt, = 1). Thus the number of cases
considered is equal ©©(n+ 1) - 2 = 2" — 2 (see Figurd, e.g.).

[ 4 2 2 ]

[ 2 2 . 2 ]

[ 2 2 0

[ L 4 4 ]

[ . 2 0

[ 900
to=0 ty=1

Ficure 1. All possible cases far = 3.

Some further observations reduce the problem only to théy/siseof particular
parts of the boundary. Let

{ 0, ti_1 # &,
Vii=y max {i—jlte1=t,j<f<i-1}, otherwise
O<j<i-1

wherei = 1,2,...,n. It turns out that if the sequené¢g)’; has a unique maximum,
the corresponding choice of parameter} ¢ can be skipped in the analysis. But
the number of sequencés)’, for which the maximum is not unique is precisely
Max(n+ 1).

Let us conclude the paper with an another example. In higleropdrametric
polynomial approximation of circular arcsy{[ e.g.), the cofficients of the optimal
solution involve the number of restricted partitions of aumal number. Namely, the
codficients of the parametric polynomial approximat) = (x(t), y(t))", where

X = ) o, y(t) = ) A
k=0 k=0

are of the form
Kn-k) 5
> Bikn-K) cos(M .

j), kis even,
j=0

2n n
0, kis odd,

g =
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and
0, kis even,
K(n—k) 2
Bk = = . . (ke m. _ ,
; P(j, k,n—K) sm(%+ﬁj), kis odd,

whereP(n, k, b) := ¥¥_, P(n, ¢, 1, b).
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