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Abstract
Planar parametric rational curves are a basic tool in Computer Aided
Geometric Design (CAGD). Among others, there are two important geo-
metric problems which have to be solved in CAGD. Given a planar para-
metric rational curve:

1) Find an implicit equation of the curve (implicitization).
2) Find the parameter value(s) corresponding to the coordinates of a
point known to lie on the curve (inversion).
The solution of these two problems will be discussed in this paper. Three

different methods for the implicitization will be presented and the problem
of inversion will be solved using the Bezout resultant.

Keywords: Computer graphics, curve representation, parametric curve, resul-
tant, implicitization, inversion.
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1 Introduction

Rational parametric polynomial curves are widely used in Computer Aided Geo-
metric Design (CAGD). It is easy to deal with them, they have an easy represen-
tation in computer memory and good computational aspects (an easy evaluation
at a given parameter, they are degree preserving under linear reparametrization,
only basic arithmetic operations have to be used to obtain a derivative, inte-
gral,...). A class of planar curves from this family is of great importance in
CAGD but also in other branches of computer science (mobile robots e.g.). So it
is very important to solve some frequent problems appearing when such curves
are used. Although parametric representation of curves is usually better than
any other, there is an important problem when an implicit representation of
the curve is desired. Namely, if one has to check if a given point T'(z,y) is on
a particular curve then an implicit representation of the curve implies an easy
answer. The problem of converting a parametric representation into an implicit
one is known as the problem of implicitization. Another problem appearing fre-
quently is, how to determine the parameter value(s) of a point on a parametric
curve. This problem is known as inversion.



So let Y ()

z(t) = and y(t) = W)

be a planar parametric rational curve (parametric curve in further text), i.e.,
X, Y and W are polynomials. We shall assume that the polynomials X, Y and
W do not have a common root. Note that x and y have the same denomina-
tor. This is a little restrictive but usually required in CAGD. The problem of
implicitization requires to find an implicit form of the parametric curve, i.e.,
F(z,y) = 0. On the other hand, for a given point T'(z¢,yo) known to lie on a
parametric curve, the problem of inversion looks for a parameter value(s) to for
which z(tg) = zo and y(to) = yo-

As mentioned before, an implicit representation of a parametric curve is
used, when one has to check if a given point T' (o, yo) is or is not on the curve.
It is of course a purely theoretical question. In practice, this is checked under
some considerable tolerance (machine precision,...). The inversion might be
used when one has to find a parameter of the located point (a mobile robot e.g.)
on a particular parametric curve.

Both problems mentioned above are closely connected with the problem of
finding common roots of two scalar polynomials which will be discussed in the
next section.

2 Common roots of two polynomials

The problem of finding common roots of two scalar polynomials has been solved
long before computers have become an important part of (numerical) analysis.
Nowadays, one could use a direct way of solving this problem in two steps.
First, all roots of the first polynomial are computed and then each of them is
checked if it is also a root of the second polynomial. Using a computer, this can
be formally done for polynomials of relatively high degree, since algorithms for
solving algebraic equations are available. But in the sense of numerical analysis
the problem of finding all the roots of a given polynomial might be unstable
(for the polynomials having roots close together e.g.). Instead, we can use an
old method known as resultant of the polynomials.
Let

p(t) = amt™+ am_1 ™t 4+ ag,
Q(t) = bn " + bnfl tnil + -+ bO

be two scalar polynomials, where at least one of a,, or b, is nonzero. Let us
define the Sylvester resultant as the determinant of the (m+n) x (m+n) matrix

fag a1 ax - Gm_1 Gm o o0 --- 0
0 a a1 -+ amee2 @me1 am O ~--- 0
_ o o o --- ag aq ay az -+ Qm
SBO=1 4 b b e by b 00 - 0
0 by b bpa bp_1 b, 0 - 0

L 0 0 0 --- bo by by bz -+ by |



The following theorem gives a very well known result which can be found in [1]:

Theorem 2.1 Polynomials p and q have a common root if and only if
det S(p,q) = 0.

Since the dimension of the Sylvester resultant (i.e. the dimension of the
matrix S(p,q)) is m + n, we sometimes use the Bezout resultant, defined by
B(p,q) = [ci;]7%—1, where the coefficients c;; satisfy the relation

p(t)a() = p(e)aft) _ i ot

Here the assumption that the degreep = m > n has been made quietly. A
similar result as for the Sylvester resultant holds for the Bezout resultant (see
[3] or [1]):

Theorem 2.2 Polynomials p and g have a common root if and only if
det B(p, q) = 0.

Example 2.1 Let p(t) = t> — 3t +2 and q(t) = 2t> + 4t — 6. An easy “com-
putation” gives

2 -3 1 0
0o 2 -3 1
S(pa q) = 2 4 —6 0
0 2 4 -6

Since det S(p,q) = 0, polynomials p and q has a common root. Indeed, p(1) =
q(1) = 0. Similarly,
10 -10

which obviously has zero determinant and implies the existence of the common
root of p and q.

3 Implicitization and inversion

Resultants can be used to solve the problem of implicitization and inversion as
we shall show now. Let z(t) = X (t)/W(t), y(t) = Y(t)/W(t) be a parametric
curve, where X, Y and W do not have a common factor. A straightforward
way to obtain the implicit equation is to write it in the form

almm+a2$m_1y+"'+a(m;2) :0, (1)

since we can assume that m is the maximal degree of X, Y and W. It implies a

homogeneous system of 2m + 1 equations for (m + 2)(m + 1)/2 unknowns and

a; can be always determined. But this usually requires a lot of calculations.
To avoid this problem, let us write

po(t) = zW(t) - X(t),
0(t) = yW)-Y(@).



where x and y are the coordinates of the point on the curve. Then, by Theorem
2.1 (or Theorem 2.2), the implicit equation of the curve is det S(ps,q,) = 0
(or det B(ps,qy) = 0). Since X, Y and W do not have a common factor, none
of these determinants can vanish identically. The same resultants can be used
to check if a given point T'(zo,yo) is on a curve. We simply compute one of
the resultants and compare it with zero (generally to machine precision). Both
resultants have some advantages and disadvantages. The Sylvester resultant has
degree m + n, but can be easily derived from the coefficients of the polynomials.
On the other hand the Bezout resultant has degree m, it is symmetric, but its
coefficients are more complicated to derive.

Example 3.1 Let the parametric curve be given by

() = 2t — 12 (t) = 11—

WET e YW T T e

Then
pe(t) = z(l—t+t3)-2t+t2 =z —(x+2)t+ (z+1)t%
@t = y(I—t+?) -1+ =y—1—yt+ (y+1)¢.

The Sylvester resultant of p, and q, becomes

T —r—2 x+1 0

0 T —r—2 z+1|_, o 2 a_
y—1 —y y+1 0 =3z 3zy+3y 3=0,
0 y—1 -y y+1

and the Bezout one is

r—2y+2 2zx+y-1

_ 9.2 a2 _
9rty—1 z4y+2 =-3z"+3zy—3y"+3=0.

Both of them imply the implict equation of the curve

P —2y+y’-1=0.

The problem of inversion is easily solved using the matrix B(pg, gy)-

Theorem 3.1 If T(x0,y0) is a simple point on the curve, then the parameter
to corresponding to a given point is

cofactor B1,2(Pao» Gyo)

~ cofactor By 1 Pz, Qyo)

If the point is not simple, the parameters can still be found using the same
matrix, but we shall omit this case.

Example 3.2 If we look at the same curve as in FExample 3.1, then by the
previous theorem the parameter, which belongs to a particular point T (zq,yo)
on the curve, can be expressed as

_—2w0+y0—1

to =
0 2o+ Yo + 2



4 The method of moving lines

This is a relatively new method (see [5] for a list of selected papers), which
combines the idea of unknown coefficients (1) and resultants. The moving line
of degree d is defined as

d
> (AiX +BiY +C; W)t =0.
i=0

Here X, Y and W are the homogeneous coordinates of the line. Since its
coefficients vary with the parameter ¢, the line is moving in the plane. A moving
line is said to follow the parametric curve, if

d
D (A X(t) + B; V() + C; W ()t = 0.
=0

The results which will follow hold for curves of even degree. They can be
generalized to curves of odd degree too, but this is beyond the scope of this
paper. So let the degree of the curve be 2m. Then, every moving line of
degree m following a curve of degree 2m has 3 (m + 1) = 3m + 3 unknown
coefficients. Since the total degree of the moving line is m + 2m = 3m, we
obtain a homogeneous system of 3m + 1 linear equations for 3m + 3 unknown
coefficients. This implies that there are always at least two linearly independent
moving lines of degree m which follow a curve of degree 2m. The implicit
equation of the curve can be found by using the following theorem.

Theorem 4.1 If a parametric curve has even degree 2m, and p1, p2 are two
linearly independent moving lines following the curve and there are no moving
lines of degree < m that follow the curve, then det S(p1,p2) = 0 is an implicit
equation of the curve.

We shall conclude with an example.

Example 4.1 Let the curve be defined as in Example 3.1. The coefficients of
two moving lines of degree 1 that follow the curve can be obtained by solving the
system of equations

By+Cy =

240 —-Co+B1+C4
—Ag—By+Co+24, - C4
A -Bi+C1 =

o o o o

The two-parametric family of solutions is obtained and we can choose two lin-
early independent solutions as

o

(- X+Y-W)+t(X+W) =
(=Y +W)+t(-X+Y) =

e

The Sylvester resultant of these lines is

-X+Y-W X+W
Y+ W -X+Y



-

Figure 1: A set of moving lines from our example at the parameter values t = 0,
t = 1/4 and t = 2/3. The plain line always represents the first moving line,
and the dashed one the second moving line. Their intersections are points on
the curve they are following. The bold segment is the set of intersections of the
moving lines for the parameter values ¢ € [0, 1].

and, since there are no moving lines of degree O that follow the curve,
X?-XY+Y?-W?=0

is an implicit equation of the curve. After dividing it by W2 we get

P —zy+y?—1=0

which is already a known result.
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