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cubic Bézier curves
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Abstract

In the paper, the Lagrange geometric interpolation by spatial rational cubic
Bézier curves is studied. It is shown that under some natural conditions the
solution of the interpolation problem exists and is unique. Furthermore, it
is given in a simple closed form which makes it attractive for practical ap-
plications. Asymptotic analysis confirms the expected approximation order,
i.e., order six. Numerical examples pave the way for a promising nonlinear
geometric subdivision scheme.
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1. Introduction

Geometric interpolation by parametric curves is a modern research topic
dealing with interpolation of geometric data (points, tangent directions, etc.),
independently of parameterization. In comparison to classical interpolation
schemes this brings additional shape parameters and consequently a higher
approximation order. Also the shape of the interpolant is more pleasant
since the parameters that need to be prescribed in classical schemes are here
chosen automatically.
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The first rigorous analysis of a particular geometric interpolation scheme
goes back to [1], which was further refined in [2]. Later, Höllig and Koch
stated in [3] a general conjecture on polynomial geometric interpolation as-
serting that these interpolants could, in general, interpolate much more data
than their classical counterparts of the same degree. However, the analysis of
geometric interpolation schemes is a challenging task since it involves anal-
ysis of systems of nonlinear equations. Several results on existence, unique-
ness, geometric conditions for solvability, and algorithms for construction are
known (see [4], [5], [6], [7], [8] and the references therein). While planar poly-
nomial geometric interpolation is a well researched topic, not much is known
for interpolation in higher dimensional spaces R

d. Obviously the rational
geometric interpolation is a even more challenging topic and even less results
are known. A nice survey on known facts is, e.g., in [9]. Some recent results
are mainly dealing with the planar case and can be found in [10], [11], [12],
[13], while the spatial case is still to be investigated.

A first step, analysis of geometric Hermite interpolation of spatial data,
was done in [14]. A general interpolation scheme for Hermite Gn−1 interpola-
tion by a rational curve of degree n was derived, and cubic and quartic cases
were studied in detail.

In practice, the Lagrange interpolation turns more useful since only data
points are interpolated, and no additional higher order approximation data
is needed. Of course, the problem is much harder than the Hermite one.
In this paper Lagrange geometric interpolation of six data points by spatial
rational cubic Bézier curves is tackled. It is shown that under some natural
conditions the solution exists and is unique. The solution can be written in
a closed form. The asymptotic analysis carries through, and it confirms the
expected approximation order six. The numerical examples are used as a
cornerstone for a new nonlinear geometric subdivision scheme that could be
used for particular sets of the initial data. The evidence supplied suggests
its nice properties.

The outline of the paper is as follows. In the next section, the Lagrange
interpolation problem is stated. It is analysed in the third section, where the
solution of the problem is revealed. In the fourth section, asymptotic anal-
ysis is carried through, and the optimal approximation order is confirmed.
The paper is concluded by numerical examples, based on a new subdivision
scheme, and by an appendix, where a geometric proof of a similar result for
the unordered data is given.
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2. Geometric interpolation problem

Suppose that data points

P ℓ ∈ R
3, ℓ = 0, 1, . . . , 5, P ℓ+1 6= P ℓ, (1)

are prescribed. The goal is to determine a rational spatial cubic Bézier curve
r : [0, 1] → R

3 that interpolates the data points at parameter values

0 =: t0 < t1 < t2 < t3 < t4 < t5 := 1, t := (tℓ)
5
ℓ=0 , (2)

with t1, t2, t3, t4 yet to be determined, i.e.,

r (tℓ) = P ℓ, ℓ = 0, 1, . . . , 5. (3)

A rational cubic Bézier curve can be written as

r =
1

π
p =

3∑

i=0

biri, p :=
3∑

i=0

wibiB
3
i , π :=

3∑

i=0

wiB
3
i , ri :=

1

π
wiB

3
i , (4)

where bi ∈ R
3 are the control points, wi are the weights, and B3

i (t) :=
(
3
i

)
ti(1 − t)3−i are the cubic Bernstein basis polynomials. By using the nor-

malized form of the curve (see [15]), we can without loss of generality assume
that w0 = w3 = 1 and thus

π(t0) = 1, π(t5) = 1. (5)

The interpolation conditions (3) give 18 scalar equations that should deter-
mine 18 unknowns, i.e., the components of control points bi, i = 0, 1, 2, 3,
the weights w1 and w2, and the parameters t1, t2, t3, t4. Quite clearly, due to
the end point interpolation property,

r(t0) = b0 = P 0, r(t5) = b3 = P 5.

If the scalar unknowns tℓ and wi have already been determined, it is a
straightforward linear task to compute b1 and b2 from (4).
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3. Equations

Let us reduce the interpolation conditions (3) to equations that determine
the scalar unknowns only. Let [τℓ, τℓ+1, . . . , τℓ+k] denote the k-th order divided
difference based upon the knots τℓ, τℓ+1, . . . , τℓ+k. Since p = πr, introduced
in (4), is a cubic curve, the divided differences [tj, tj+1, . . . , tj+4] , j = 0, 1,
map it to 0. However, the parameters (2) should be distinct, and the closed
form divided difference representation can be applied (see e.g., [16]). This
gives two vector equations for six scalar unknowns

[tj, tj+1, . . . , tj+4] (πr) =

j+4
∑

ℓ=j

π(tℓ)

ω̇j (tℓ)
r (tℓ) =

j+4
∑

ℓ=j

π(tℓ)

ω̇j (tℓ)
P ℓ = 0, j = 0, 1,

(6)
where

ωj (t) :=

j+4
∏

ℓ=j

(t− tℓ) , j = 0, 1. (7)

Since π is a cubic polynomial, its divided difference at five points vanishes,
thus

P 0

j+4
∑

ℓ=j

π(tℓ)

ω̇j (tℓ)
= 0, j = 0, 1, (8)

and we may further simplify (6) to

j+4
∑

ℓ=1

π(tℓ)

ω̇j (tℓ)
(P ℓ − P 0) =

j+4
∑

ℓ=1

π(tℓ)

ω̇j (tℓ)

ℓ−1∑

i=0

∆P i =

j+3
∑

i=0

∆P i

j+4
∑

ℓ=i+1

π(tℓ)

ω̇j (tℓ)
= 0,

j = 0, 1, with ∆P i := P i+1 − P i. If i = 0 and j = 1, the term

j+4
∑

ℓ=i+1

π(tℓ)

ω̇j (tℓ)

vanishes, and we obtain a compact form of the equations, i.e.,

j+3
∑

i=j

∆P i

j+4
∑

ℓ=i+1

π(tℓ)

ω̇j (tℓ)
= 0, j = 0, 1. (9)
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But (9) simply shows that for j = 0, 1, vectors

k0 :=

(
j+4
∑

ℓ=j+1

π(tℓ)

ω̇j (tℓ)
,

j+4
∑

ℓ=j+2

π(tℓ)

ω̇j (tℓ)
,

j+4
∑

ℓ=j+3

π(tℓ)

ω̇j (tℓ)
,
π(tj+4)

ω̇j (tj+4)
, 0

)T

,

(10)

k1 :=

(

0,

j+4
∑

ℓ=j+1

π(tℓ)

ω̇j (tℓ)
,

j+4
∑

ℓ=j+2

π(tℓ)

ω̇j (tℓ)
,

j+4
∑

ℓ=j+3

π(tℓ)

ω̇j (tℓ)
,
π(tj+4)

ω̇j (tj+4)

)T

belong to the kernel of the data difference matrix

∆P := (∆P i)
4
i=0 ∈ R

3,5. (11)

From (5), (7) and (8) we observe

4∑

ℓ=1

π(tℓ)

ω̇0 (tℓ)
= − π(t0)

ω̇0 (t0)
= − 1

ω̇0 (t0)
< 0,

π(t5)

ω̇1 (t5)
=

1

ω̇1 (t5)
> 0. (12)

Note that the kernel ker∆P is at least two-dimensional. But if the interpo-
lation problem (3) has a solution then by (10) and (12) there should exist
vectors

ζj := (ζj,i)
4
i=0 , ζj ∈ ker∆P , j = 0, 1, (13)

with
ζ0,0 = 1, ζ0,4 = 0, ζ1,0 = 0, ζ1,4 = 1, (14)

that satisfy

k0 = − 1

ω̇0 (t0)
ζ0, k1 =

1

ω̇1 (t5)
ζ1.

Componentwise these equations are

4∑

ℓ=i+1

π(tℓ)

ω̇0 (tℓ)
= − 1

ω̇0 (t0)
ζ0,i, i = 0, 1, 2, 3,

(15)
5∑

ℓ=i+1

π(tℓ)

ω̇1 (tℓ)
= −

i∑

ℓ=1

π(tℓ)

ω̇1 (tℓ)
=

1

ω̇1 (t5)
ζ1,i, i = 1, 2, 3, 4.

Let ∆ζj,i−1 := ζj,i − ζj,i−1. By subtracting consecutive equations in (15) we
derive

π(ti)

ω̇0 (ti)
=

1

ω̇0 (t0)
∆ζ0,i−1,

π(ti)

ω̇1 (ti)
= − 1

ω̇1 (t5)
∆ζ1,i−1, i = 1, 2, 3, 4. (16)
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Moreover,

sign ω̇0 (ti) = (−1)i , i = 0, 1, . . . , 3, sign ω̇0 (t4) = sign ω̇0 (t5) = 1,
(17)

sign ω̇1 (t0) = sign ω̇1 (t1) = 1, sign ω̇1 (ti) = (−1)i−1 , i = 2, 3, . . . , 5.

Let us define

δi−1 :=
∆ζ0,i−1

∆ζ1,i−1

, i = 1, 2, 3, 4, δ := (δi)
3
i=0 .

If we eliminate π(ti), i = 1, 2, 3, 4, from (16), we obtain a system of four
equations

ω̇1 (t5)

ω̇0 (t0)
δi−1 +

ω̇1 (ti)

ω̇0 (ti)
= 0, i = 1, 2, 3, 4, (18)

for the unknown parameters ti. By (17) and (18), δi−1 > 0, i = 1, 2, 3, 4.
After multiplying the i-th equation by a common nonzero factor (ti−t0)/(t5−
ti) and subtracting the consecutive equations, we obtain

t5 − t2
t2 − t0

δ0 =
t5 − t1
t1 − t0

δ1,
t5 − t3
t3 − t0

δ1 =
t5 − t2
t2 − t0

δ2,
t5 − t4
t4 − t0

δ2 =
t5 − t3
t3 − t0

δ3,

which allows one to express t2, t3, t4 in terms of t1. But then the last equation
in (18) simplifies to

δ1δ2δ3
δ20

(t5 − t1)
3

(t1 − t0)
3 = 1,

and we end up with a simple closed form solution

ti =
3
√
δ0δ1δ2δ3

δi−1 +
3
√
δ0δ1δ2δ3

, i = 1, 2, 3, 4. (19)

Since δi should be positive, the parameters ti satisfy (2) if and only if

δ0 > δ1 > δ2 > δ3 > 0. (20)

Once the parameter values ti have been determined by (19), there are several
ways to compute the weights wi from (5) and (16). Since

w1 =
1

3
π̇(0) + 1, w2 = −1

3
π̇(1) + 1, (21)
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we may express the cubic polynomial π as an interpolating polynomial, based
upon pairs

(t0, π (t0)) , (t2, π (t2)) , (t3, π (t3)) , (t4, π (t4))

from the first set of equations in (16), and

(t1, π (t1)) , (t2, π (t2)) , (t3, π (t3)) , (t5, π (t5))

from the second one. Then (21) gives the weights

w1 =
−δ0 (∆ζ0,0 + 1)− δ1 (∆ζ0,1 + 1)− δ2 (∆ζ0,2 + 1)− δ3 (∆ζ0,3 + 1)

3 3
√
δ0δ1δ2δ3

,

(22)

w2 =
1

3
3

√

δ0δ1δ2δ3

(
∆ζ1,0 − 1

δ0
+

∆ζ1,1 − 1

δ1
+

∆ζ1,2 − 1

δ2
+

∆ζ1,3 − 1

δ3

)

.

Let us summarize the discussion.

Theorem 1. Suppose that there exist kernel vectors ζj := (ζj,i)
4
i=0 of the

data difference matrix ∆P , defined in (11), that satisfy (14) and (20). Then
there exists a cubic rational Bézier curve that interpolates the data (1) at

parameters (19), with weights provided by (22).

Remark 1. As it was pointed out by a referee, the existence and unique-
ness of the solution of the problem of geometric interpolation of six unordered
spatial points by a rational cubic is well known in projective and algebraic
geometry. We include a simple proof of this result, also kindly provided
by the same referee, in the appendix since it is hard to find it in the liter-
ature. However, the interpolation problem considered in our paper differs
significantly, since the order of points to be interpolated is prescribed.

If the data (1) are not planar, we can elaborate the assertion of Theorem 1
a little bit further. Let us define determinants

Dijk := det (∆P i,∆P j,∆P k) , i, j, k ∈ {0, 1, . . . , 4} .
Corollary 2. Suppose that D123 6= 0. Then the cubic rational Bézier inter-

polating curve exists if

D023 +D123

D234

>
D013 +D023

D134 +D234

>
D012 +D013

D124 +D134

>
D012

D123 +D124

. (23)

If Dijk = 0 for some 0 ≤ i < j < k ≤ 4, k− i < 4, the interpolation problem

may have a solution only if the data are planar.
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Proof. If D123 6= 0, the kernel vectors (13) are by the Cramer’s rule

ζ0 =

(

1,−D023

D123

,
D013

D123

,−D012

D123

, 0

)

, ζ1 =

(

0,−D234

D123

,
D134

D123

,−D124

D123

, 1

)

.

(24)
Further,

δ0 =
D023 +D123

D234

, δ1 =
D013 +D023

D134 +D234

, δ2 =
D012 +D013

D124 +D134

, δ3 =
D012

D123 +D124

,

and the requirement (20) follows from (23). If Dijk = 0 for some 0 ≤ i <
j < k ≤ 4, k − i < 4, the vectors ∆P i, ∆P j, and ∆P k are coplanar,
and the kernel vectors ζj that satisfy (14) do not exist unless ∆P ℓ, ℓ ∈
{0, 1, . . . , 4}\{i, j, k}, belong to the same plane.

Algebraic conditions (23) have a simple geometric interpretation that may
be used for the computation of the unknown scalar parameters too. Let

V s
ijk := (−1)s det (P i − P s,P j − P s,P k − P s) , s = 0, 5, i, j, k ∈ {1, 2, 3, 4}.

Geometrically, 1
6
V s
ijk is the signed volume of the tetrahedron spanned by the

vectors P r − P s, r = i, j, k. It is then easy to verify that

D123 = (−1)s (−V s
123 + V s

124 − V s
134 + V s

234) , s = 0, 5. (25)

Further, with ∆ζi := (∆ζi,j)
3
j=0 , i = 0, 1,

∆ζ0 =
1

D123

(
−V 0

234, V
0
134,−V 0

124, V
0
123

)
,

(26)

∆ζ1 =
1

D123

(
−V 5

234, V
5
134,−V 5

124, V
5
123

)
,

and consequently

δ0 =
V 0
234

V 5
234

, δ1 =
V 0
134

V 5
134

, δ2 =
V 0
124

V 5
124

, δ3 =
V 0
123

V 5
123

. (27)

So one obtains an admissible solution only if the sequence δ of volume quo-
tients is monotonically decreasing but positive (Fig. 1). In order to inves-
tigate the background of this property let us assume that the data P ℓ are
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P0 P1

P2

P3

P4

P5

V234
0

P0 P1

P2

P3

P4

P5

V234
5

P0 P1

P2

P3

P4

P5

V134
0

P0 P1

P2

P3

P4

P5

V134
5

P0 P1

P2

P3

P4

P5

V124
0

P0 P1

P2

P3

P4

P5

V124
5

P0 P1

P2

P3

P4

P5

V123
0

P0 P1

P2

P3

P4

P5

V123
5

Figure 1: An example of the tetrahedrons that determine volumes V 0
ijk, V

5
ijk and the

corresponding quotients. The sequence δ, obtained in the computational background, is
(2.83512, 1.1692, 0.556325, 0.212169).

sampled from an analytic parametric curve f : [a, b] → R
3 at parameter

values
η0 < η1 < · · · < η5, ηℓ ∈ [a, b], η := (ηℓ)

5
ℓ=0 .

Then the volumes V s
ijk could also be written as

V s
ijk = (−1)s V (ηs, ηi, ηj , ηk) det ([ηs, ηi]f , [ηs, ηi, ηj]f , [ηs, ηi, ηj, ηk]f) ,

(28)
where

V (u1, u2, u3, u4) =
∏

j>i

(uj − ui) (29)

denotes the Vandermonde determinant, based upon values u1, u2, u3, u4. The
det factor in (28) could be viewed as a (unnormalised) discrete torsion,
depending on the parameter values involved. For ℓ = 1, 2, 3, 4, (i, j, k) =
(r)4r=1,r 6=ℓ , this gives

δℓ−1 = cη
η5 − ηℓ
ηℓ − η0

qℓ, (30)

where

qℓ :=
det ([η0, ηi]f , [η0, ηi, ηj ]f , [η0, ηi, ηj , ηk]f)

det ([ηi, η5]f , [ηi, ηj, η5]f , [ηi, ηj, ηk, η5]f)
, (31)
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and the constant

cη :=
4∏

i=1

ηi − η0
η5 − ηi

(32)

does not depend on ℓ. The second factor in (30) clearly decreases with ℓ, so
the Lagrange interpolation problem will have an admissible solution if the
discrete torsion does not change sign, and it varies with parameters rather
slightly. This condition is obviously satisfied if the curvature and the torsion
of the curve f do not change the sign, and the parameters ηℓ are close enough.

Though in practice one would use the Bézier form of the interpolant (4), a
closed Lagrange form of the interpolant could sometimes be useful too. Since
tℓ should be distinct, it is right at hand. Let us introduce cubic polynomials

ψi(t) :=
4∏

j=1

j 6=i

(t− tj) , i = 1, 2, 3, 4.

If we rewrite ψi in the Bernstein basis, we obtain

ψi = ψi(0)B
3
0 +

(

ψi(0) +
1

3
ψ̇i(0)

)

B3
1 +

(

ψi(1)−
1

3
ψ̇i(1)

)

B3
2 + ψi(1)B

3
3 .

But
ψi(tj) = δi,jψi(ti), i, j = 1, 2, 3, 4.

So the rational functions

Li := Li,t :=
π(ti)

ψi(ti)

(

ψi(0)r0 +
1

w1

(

ψi(0) +
1

3
ψ̇i(0)

)

r1

(33)

+
1

w2

(

ψi(1)−
1

3
ψ̇i(1)

)

r2 + ψi(1)r3

)

, i = 1, 2, 3, 4,

with rk : [0, 1] → R, k = 0, 1, 2, 3, defined in (4), satisfy Li(tj) = δi,j , i, j =
1, 2, 3, 4. Also, from (6),

P 0 =
4∑

i=1

(

− ω̇0 (t0) π(ti)

ω̇0 (ti)

)

P i =
4∑

i=1

P iLi (t0) ,

and similarly at t5. Thus, if the interpolant r exists, it admits a closed form
representation

r =
4∑

i=1

P iLi.
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Of course, the particular choice of parameters t1, t2, t3, t4 could be replaced
by any subset of four distinct values from (2). Also, the rational cubic ge-
ometric interpolation scheme reproduces cubic rational Bézier curves with
nonvanishing both the curvature and the torsion uniquely. This implies the
identity

4∑

i=1

p(ti)

π(ti)
Li =

p

π
,

where p denotes any polynomial of degree ≤ 3.
Cubic rational Bézier curves r : [0, 1] → R

3 may be unbounded if the
denominator π vanishes in (0, 1). But for an interpolant that interpolates
six data points one would usually try to avoid this situation in practical
applications. Since the weights wi could be derived in a closed form, the
following corollary elaborates this possibility further.

Corollary 3. Suppose that the assumptions D123 6= 0 and (23) of Corol-

lary 2 are satisfied, and the weights w1, w2 are determined by (22), (25), (26),
and (27). The denominator π is positive on (0, 1) if w1 ≥ 0 and w2 ≥ 0. If

at least one of the weights wi is negative then π remains positive iff

4w3
1 − 3w2

1w
2
2 − 6w1w2 + 4w3

2 + 1 > 0.

Proof. Note that due to the convex hull property π(t) > 0, t ∈ [0, 1], for
all weights (w1, w2) in the first quadrant

R
2
+ := {(w1, w2) |w1 ≥ 0, w2 ≥ 0} ⊂ R

2.

Let D ⊃ R
2
+ be the largest connected open set that determines the weights

for which π does not vanish in [0, 1]. Since π(0) = π(1) = 1, π must have a
double zero at each point(w1, w2) of the boundary of D. The first polynomial
of the Gröbner basis of the polynomials {π, π̇} reads

g(w1, w2) := 4w3
1 − 3w2

1w
2
2 − 6w1w2 + 4w3

2 + 1.

Thus double zeroes of π must lie on the variety g(w1, w2) = 0. There is
precisely one branch of this variety in R

2 \ R2
+ (see Figure 2).

In order to observe this note that g(−1/3,−1/3) = 0. For each w2 ∈
R, w2 ≥ −1/3, there is one sign change in the coefficient sequence

(
−4,−3w2

2,+6w2, 4w
3
2 + 1

)
,

11



-1.5 -1.0 -0.5 0.5 1.0 1.5
w1

-1.5

-1.0

-0.5

0.5

1.0

1.5

w2

Figure 2: The variety g(w1, w2) = 0 (black curves) and the region where r has poles (filled
region).

so by the Descartes’ rule of signs there exists precisely one w1 = w1(w2) < 0
such that g(w1(w2), w2) = 0. If we interchange the role of w1 and w2, we
obtain the other half of the branch concerned. Since g(0, 0) = 1 > 0, the
polynomial π stays positive on (0, 1) if g(w1, w2) > 0, (w1, w2) ∈ R

2 \ R
2
+.

On the other side, if g(w1, w2) ≤ 0, (w1, w2) ∈ R
2 \ R

2
+, (21) implies that

the denominator π has a unique minimum at t∗ ∈ (0, 1), π̇(t∗) = 0. The
quadratic equation yields

t∗ := t∗(w1, w2) :=







1
3
+ 1

3
1−w2

1−w1+
√

(1−w2)2+(1−w1)(w2−w1)
, w1 < w2,

1
2
, w1 = w2,

2
3
− 1

3
1−w1

1−w2+
√

(1−w1)2+(1−w2)(w1−w2)
, w1 > w2.

Since
∂π (t∗)

∂w1

= B3
1 (t

∗) + π̇ (t∗)
∂t∗

∂w1

= B3
1 (t

∗) > 0,

for any (w1, w2) ∈ R
2\R2

+ such that g(w1, w2) < 0 the denominator π strictly
increases with w1 to the value 0 at g(w1, w2) = 0. The proof is complete. �
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4. Asymptotic analysis

In this section, we show that the assumptions of Corollary 2 are fulfilled
for quite a significant class of data. Some expansions involved have been
obtained by using a computer algebra system.

Theorem 4. If the data (P ℓ)
5
ℓ=0 are sampled from an analytic curve f :

[a, b] → R
3 with nonvanishing both the curvature as well as the torsion,

and the parameter interval [a, b] is small enough, then there exists a unique

geometric Lagrange cubic rational Bézier interpolant.

Proof. Without loss of generality we may assume that f is parameterized
by the arc-length s ∈ [0, h], with data points determined by

P ℓ = f (hηℓ) , ℓ = 0, 1, . . . , 5, (34)

where
0 = η0 < η1 < · · · < η4 < η5 = 1, η := (ηℓ)

5
ℓ=0 .

We may also additionally assume

f(0) =





0
0
0



 , Ff(0) =





1 0 0
0 1 0
0 0 1



 , (35)

where Ff denotes the Frenet frame of the curve f . Let the curvature κ and
the torsion τ of f expand as

κ(s) = κ0 + κ1
s

1!
+ κ2

s2

2!
+ . . . , τ(s) = τ0 + τ1

s

1!
+ τ2

s2

2!
+ . . . , s ∈ [0, h],

with κ0, τ0 6= 0 by the assumption. The Frenet-Serret formulas, with the
choice (35), give the curve expansion that shortens to

f(s) =






s− 1
6
κ20s

3 − 1
8
κ0κ1s

4 +O (s5)
1
2
κ0s

2 + 1
6
κ1s

3 + 1
24
(κ2 − κ0 (κ

2
0 + τ 20 )) s

4 +O (s5)
1
6
κ0τ0s

3 + 1
24
(2κ1τ0 + κ0τ1) s

4 +O (s5)




 .

From here, it is straightforward to determine by (34) the data and the data
difference expansions. The key determinant expands as

D123 =
1

12
V (η1, η2, η3, η4)κ

2
0τ0h

6 +O
(
h7
)
,

13



and it obviously does not vanish for h small enough since V (η1, η2, η3, η4) > 0
(see (29)). Further, qℓ defined in (31) expands as

qℓ = 1− 2κ1τ0 + κ0τ1
4κ0τ0

h+O
(
h2
)

independently of ℓ. So (30) gives the quotients

δi−1 = cη
1− ηi
ηi

(

1− 2κ1τ0 + κ0τ1
4κ0τ0

h

)

+O
(
h2
)

that clearly satisfy (20) for h small enough. The proof is completed. �

The analysis of the asymptotic approximation order requires a rather
precise expansion of the scalar unknowns. The parameters ti expand as

ti = ηi + (1− ηi) ηi
(
ci,1h+ ci,2h

2 + ci,3h
3
)
+O

(
h4
)
, i = 1, 2, 3, 4. (36)

Here, ci,k are expressions that depend on the data constants only. In partic-
ular, ci,k involves coefficients κj, τj , j = 0, 1, . . . , k. The terms

ci,1 = −1

6

(
κ1
κ0

+
τ1
2τ0

)

are independent of ηℓ, the terms ci,2 are linear functions of ηi,

ci,2 =
1

360

(
2κ1τ1
κ0τ0

− 18κ2
κ0

+ 6κ20 +
20κ21
κ20

+
6τ 40 − 6τ2τ0 + 5τ 21

τ 20

)

− 1

180

(
2κ1τ1
κ0τ0

+
12κ2
κ0

+ 6κ20 −
10κ21
κ20

+
6τ 40 + 9τ2τ0 − 10τ 21

τ 20

)

ηi,

with coefficients that do not depend on i, and ci,3 are polynomials of total
degree 2 in constants ηℓ. This illuminates the fact, verified for k = 3 directly,
that the following divided differences of the terms ci,k vanish,

[ηj, . . . , ηj+k] (ci,k)
k+j

i=j
:=

k+j
∑

i=j

ci,k
k+j∏

ℓ=j
ℓ6=i

(ηi − ηℓ)

= 0, j = 1, 2, . . . , 4−k; k = 1, 2, 3.

(37)
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At last, we obtain expansions of the weights wi from (22) as

wi = 1− d2h
2 +O

(
h3
)
, i = 1, 2, (38)

with

d2 :=
36κ40τ

2
0 + κ20 (36τ

4
0 + 24τ2τ0 − 35τ 21 ) + 4κ0τ0 (3κ2τ0 − 2κ1τ1)− 20κ21τ

2
0

720κ20τ
2
0

.

The expansions obtained allow us to prove the following theorem. But first
of all, let us recall the parametric distance (see e.g., [17]) as a measure of
distance between parametric curves f : [a, b] → R

d and g : [c, d] → R
d,

defined as
distP (f , g) := inf

ϕ
max
a≤t≤b

‖f(t)− g(ϕ(t))‖,

where the infimum is taken among all diffeomorphisms ϕ : [a, b] → [c, d], and
‖.‖ is the usual Euclidean norm.

Theorem 5. Suppose that the interpolation data

P ℓ = f(hηℓ), ℓ = 0, 1, . . . , 5, 0 = η0 < η1 < · · · < η4 < η5 = 1,

are sampled from an analytic curve f : [0, h] → R
3 with nonvanishing curva-

ture and torsion. The asymptotic parametric approximation order is optimal,

i.e., 6.

Proof. Suppose that h is small enough, so that the assertions of Theorem 4
hold, and let rh = 1

πh
ph denote the rational cubic interpolant, obtained for

a particular h. Let us recall the triangle inequality

distP (f , rh) ≤ distP (f , q) + distP (q, rh) . (39)

A good guess of the inserted curve q could make it easier to bound two right-
hand terms than the distance distP (f , rh) directly. We choose q = qh as a
polynomial curve of degree ≤ 5 determined by the interpolation conditions

qh(tℓ) = P ℓ, ℓ = 0, 1, . . . , 5.

This way we may use the Newton error remainder form to bound each of the
terms involved. In order to bound the first one we reparameterize f by an
interpolating polynomial ϕ of degree ≤ 5, determined by the conditions

ϕ(tℓ) = h ηℓ, ℓ = 0, 1, . . . , 5.
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The expansions (36) show that tℓ are separated for h small enough, and ϕ is
well defined. Let us recall t0 = η0 = 0, t5 = η5 = 1, and (36). If we expand
entries of the divided difference table for the data (ti, hηi)

5
i=0, the relations

(37) imply
[ti, ti+1]ϕ = h+O

(
h2
)
, i = 0, 1, . . . , 4,

and

[ti, ti+1, . . . , ti+j ]ϕ = O
(
hj
)
, i = 0, 1, . . . , 5− j; j = 2, 3, . . . , 5.

Thus
ϕ′(t) = h+O

(
h2
)
, ϕ(j)(t) = O

(
hj
)
, j = 2, 3, . . . , 5, (40)

and, since ϕ is a particular regular reparameterization, we obtain the bound

distP (f , qh) ≤ max
0≤t≤1

‖f (ϕ(t))− qh(t)‖.

But the polynomial curve qh agrees with f ◦ϕ at six parameter values tℓ, ℓ =
0, 1, . . . , 5. So the interpolation error is

f (ϕ(t))− q(t) = (t− t0)(t− t1) · · · (t− t5) [t0, t1, . . . , t5, t] (f ◦ ϕ) = O
(
h6
)
.

The last equality follows from the chain rule applied to d6

dt6
f (ϕ(t)), and (40),

which proves more generally

dr

dtr
f (ϕ(t)) = O (hr) , r = 1, 2, . . . , 6. (41)

The second term in (39) is bounded from above by

distP (qh, rh) ≤ max
0≤t≤1

‖qh (t)− rh(t)‖,

and

qh (t)− rh(t) = (t− t0)(t− t1) · · · (t− t5) [t0, t1, . . . , t5, t] rh,

since qh interpolates rh at tℓ, ℓ = 0, 1, . . . , 5 too. But πhrh is a polynomial
curve of degree ≤ 3, and the Leibniz rule reveals

0 = [t0, t1, . . . , t5, t] (πhrh) =

= πh(t) [t0, t1, . . . , t5, t] rh +
3∑

i=1

[t0, t1, . . . , ti−1, t] πh [ti−1, ti, . . . , t5] rh.
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From the expansion (38), the closed derivatives form and the convex hull
property of Bézier curves it is straightforward to conclude

πh(t) = 1 +O
(
h2
)
, π′

h(t) = O
(
h2
)
, π

(i)
h (t) = O

(
hi
)
, i = 2, 3. (42)

Since rh interpolates f ◦ ϕ at tℓ, (41) and (42) imply

(
1 +O

(
h2
))

[t0, t1, . . . , t5, t] rh =

−
3∑

i=1

[t0, t1, . . . , ti−1, t] πh
︸ ︷︷ ︸

O(hi)

[ti−1, ti, . . . , t5] (f ◦ ϕ)
︸ ︷︷ ︸

O(h6−i)

= O
(
h6
)
.

This concludes the proof. �

5. Numerical example: subdivision

In this section, we illustrate the cubic rational Lagrange geometric inter-
polation at six points by using it as a basic step of a geometric subdivision
scheme. The example is entirely numerical. All the basic theoretical ques-
tions that accompany each subdivision scheme, such as the correctness and
the convergence, the smoothness of the limit curve etc., are yet to be an-
swered.

Suppose that an initial data points sequence
(
P 0

ℓ

)
is such that a rational

cubic interpolant r0
ℓ that interpolates the points P 0

ℓ+i, i = −2,−1, . . . , 3,
exists for all ℓ. The subdivision is defined by the rules

P k+1
2ℓ = P k

ℓ ,

P k+1
2ℓ+1 =

4∑

i=1

Li,tk
ℓ

((
tkℓ,2 + tkℓ,3

)
/2
)
P k

ℓ+i−2 = rk
ℓ

((
tkℓ,2 + tkℓ,3

)
/2
)
,

where
tkℓ :=

(
tkℓ,j
)5

j=0
, tkℓ,0 = 0 < tkℓ,1 < · · · < tkℓ,5 = 1,

are the parameter values at which the rational cubic curve rk
ℓ interpolates

the points
P k

ℓ−2,P
k
ℓ−1, · · · ,P k

ℓ+3,

and Li,tk
ℓ
are the corresponding Lagrange basis functions, determined by (33).
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Let us consider the curve f : [0, 10] → R
3, defined as follows

f(t) :=
1√
5





√
5 ln(t+ 1) cos t√

t2 + 1 + 2 ln(t+ 1) sin t

2
√
t2 + 1− ln(t+ 1) sin t



 . (43)

Let the boundary data points be given by

P 0
ℓ = f

(
ℓ

100

)

, P 0
m0−1−ℓ = f

(

10− ℓ

100

)

, ℓ = 0, 1, 2, (44)

with m0 = 20, and let the rest of the initial data points
(
P 0

ℓ

)m0−4

ℓ=3
be sampled

from f in two different ways, equidistantly and randomly, just to investigate
the influence of the initial data distribution. In both cases, the subdivision
carries through, and we obtain sequences of points

(
P k

ℓ

)mk−1

ℓ=0
, k = 0, 1, . . . mk = 15 · 2k + 5. (45)

Figure 3: A superposition of the first five subdivision steps
(

P k
ℓ

)mk−1

ℓ=0

, k = 0, 1, . . . , 4,

starting with the equidistant data distribution (5 curves on the left), and a random one
(5 curves on the right).

Superpositions of the resulting first five steps are shown in Fig 3. In order
to exploit the numerical evidence of (45) further, we consider the sequence

Ek, k = 0, 1, . . . , 8,
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of polygons, based upon the points
(
P k

ℓ

)mk−1

ℓ=0
. The limit curve would be

continuous if
(
Ek
)

k≥0
forms componentwise a Cauchy sequence in the uni-

form norm. To observe this numerically, we compute a particular parametric

P
{

k
= P2 {

k+1

P
{+1
k
= P2 {+2

k+1

P2 {+1
k+1

Ρ
{

k+1

Figure 4: Regular parameterization of the segment of Ek+1 by the orthogonal projection
to the line segment P k

ℓP
k
ℓ+1.

distance (see Figure 4). The segment of Ek+1, determined by the points
P k+1

2ℓ ,P k+1
2ℓ+1,P

k+1
2ℓ+2, can be regularly parameterized by the orthogonal pro-

jection onto the line segment P k
ℓP

k
ℓ+1 to the point

uP k
ℓ + (1− u)P k

ℓ+1, u ∈ [0, 1],

provided

λk+1
ℓ := max

{∥
∥P k+1

2ℓ+1 − P k+1
2ℓ

∥
∥

∥
∥P k

ℓ+1 − P k
ℓ

∥
∥

,

∥
∥P k+1

2ℓ+2 − P k+1
2ℓ+1

∥
∥

∥
∥P k

ℓ+1 − P k
ℓ

∥
∥

}

< 1.

In the latter case, for this particular parametric distance, we obtain for the
segment considered

max
0≤u≤1

‖Ek+1(u)− Ek(u)‖∞ = ρk+1
ℓ ,

where ρk+1
ℓ denotes the Euclidean length of the altitude in the triangle

P k
ℓP

k
ℓ+1P

k+1
2ℓ+1 with the base P k

ℓP
k
ℓ+1 (see Figure 4). Figure 5 clearly in-

dicates that
ρk := max

ℓ
ρkℓ
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1

Figure 5: The distances
(
ρkℓ
)
, k = 1, 2, 3, 4, for the equidistant data start-up distribution

(left), and a random one (right).

k λk ρk ρk/ρk−1 ψk ψk/ψk−1

1 0.600 1.29810× 10−1 7.41337× 10−1

2 0.536 3.41883× 10−2 0.263 3.78804× 10−1 0.511
3 0.519 8.61251× 10−3 0.252 1.94666× 10−1 0.514
4 0.513 2.15623× 10−3 0.250 9.95511× 10−2 0.511
5 0.509 5.39930× 10−4 0.250 5.00913× 10−2 0.503
6 0.507 1.35229× 10−4 0.250 2.50837× 10−2 0.501
7 0.505 3.38780× 10−5 0.251 1.25537× 10−2 0.500
8 0.505 8.48945× 10−6 0.251 6.27875× 10−3 0.500

Table 1: Convergence of the subdivision to the limit G1 curve, with equidistantly sampled
starting data.

decreases with growing k, independently of the starting data distribution.
More precisely, the numerical evidence, given in Tables 1 and 2 clearly

supports the conclusion that

λk := max
ℓ
λkℓ

stays bounded well below 1, and the sequence
(
ρk
)
decreases by a factor

larger than 2. This supports a conjecture that the sequence
(
Ek
)
converges

to a continuous curve. Further, let ψk
ℓ ,

ψk
ℓ := ∠

(
P k

ℓ−1P
k
ℓ ,P

k
ℓP

k
ℓ+1

)
, ψk := max

ℓ
ψk
ℓ ,

be an angle between the consecutive line segments of Ek. If ψk → 0 uniformly
with growing k, the limit curve would be G1 too (see e.g., [18]). Figure 6
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k λk ρk ρk/ρk−1 ψk ψk/ψk−1

1 0.614 1.24849× 100 9.91372× 10−1

2 0.566 4.21494× 10−1 0.338 5.96720× 10−1 0.602
3 0.555 1.09887× 10−1 0.261 3.41928× 10−1 0.573
4 0.550 2.76940× 10−2 0.252 1.76209× 10−1 0.515
5 0.547 6.95455× 10−3 0.251 8.69146× 10−2 0.493
6 0.550 1.76050× 10−3 0.253 4.36649× 10−2 0.502
7 0.559 4.47925× 10−4 0.254 2.18677× 10−2 0.501
8 0.572 1.44841× 10−4 0.323 1.13530× 10−2 0.519

Table 2: Convergence of the subdivision to the limit G1 curve, with randomly sampled
starting data.

0.2 0.4 0.6 0.8 1.0
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1.00
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0.70

0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.050

0.100

0.500

1.000

Figure 6: The angles
(
ψk
ℓ

)
, k = 0, 1, . . . , 4, for the equidistant data start-up distribution

(left), and the random one (right).

and Tables 1 and 2 give support to this conjecture too. One is tempted to
conjecture even G2 smoothness though the polynomial counterparts (see e.g.,
[19]) are discouraging. But a brief numerical evidence shows that this is not
to be expected in general.

Let us conclude the paper with a numerical estimate of the asymptotic
approximation order of the limit curve. We choose the boundary points by
(44), and the other points are distributed equidistantly, starting with

m0 = 20, 40, . . . , 120,

initial points. For each m0, we estimate the Hausdorff distance between the
curve f and the polygon obtained after three subdivision steps. Table 3
clearly indicates that the approximation order is 6.
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m0 distH (f , E3) decay

20 6.69477× 10−3

40 9.47456× 10−5 −6.143
60 9.01141× 10−6 −5.802
80 1.25521× 10−6 −6.852
100 3.08374× 10−7 −6.291
120 1.04793× 10−7 −5.920

Table 3: The approximation order after three subdivision steps, for the number of initial
points 20, 40, . . . , 120.

Appendix A.

In this section the proof of the geometric result on existence and unique-
ness of a solution of the geometric interpolation problem for the unordered
data, provided by the referee, is given. The result is well-known in algebraic
and projective geometry, but it seems that it is hard to be found in the
literature, so we include it for completeness.

Theorem 6. Let P 0,P 1, . . . ,P 5 be given spatial points. If no quadruple of

points is coplanar, there exists a unique geometric rational cubic curve, which

interpolates given data.

Proof. Take one of the given points in the projective space, say P 5, and
project all the others from P 5 onto a plane ǫ (not passing through P 5).
Denote the image points by P 0,P 2,P 3,P 4. The assumption implies that
no triple of these points are collinear. So there is a unique non-degenerate
quadratic conic C1 passing through them (i.e., an interpolating conic). Ob-
viously, there is a unique quadratic cone K1 with the vertex P 5, passing
through that conic C1. By construction, all the six given points lie on it.

Now interchange the roles of P 5 and another of the given points, say
P 4, getting a second quadratic cone K2 which also contains all the six given
points. The intersection of these cones (being an algebraic variety of fourth
order) splits into the common generator P 4P 5 and a spatial rational cubic.
(There is only one projective type of them, called “normal cubic” and denoted
by C3.) Since every such cubic passes through the vertex of any quadratic
cone on which it is lying, it passes also through P 4 and P 5, hence through
all the six given points.
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Uniqueness is implied by construction since the variety of all chords (in-
cluding tangents) of C3 is a one-parameter family of quadratic cones (like K1

and K2) with vertices running along this C3 and the common intersection of
all these cones is just the C3 itself. This completes the proof. �
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