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Abstract The problem of geometric interpolation by Pythagorean-hodograph (PH)

curves of general degree n is studied independently of the dimension d ≥ 2. In contrast

to classical approaches, where special structures that depend on the dimension are

considered (complex numbers, quaternions, etc.), the basic algebraic definition of a PH

property together with geometric interpolation conditions is used. The analysis of the

resulting system of nonlinear equations exploits techniques such as the cylindrical al-

gebraic decomposition and relies heavily on a computer algebra system. The nonlinear

equations are written entirely in terms of geometric data parameters and are indepen-

dent of the dimension. The analysis of the boundary regions, construction of solutions

for particular data and homotopy theory are used to establish the existence and (in

some cases) the number of admissible solutions. The general approach is applied to the

cubic Hermite and Lagrange type of interpolation. Some known results are extended

and numerical examples provided.

Mathematics Subject Classification (2000) 65D05 · 65D17

1 Introduction

Polynomial Pythagorean-hodograph (PH) curves have been widely studied in the last

two decades. Since the Euclidean norm of their hodograph is the absolute value of a

polynomial, they possess several practically important properties like a rational offset,

polynomial arc length, etc. This makes them a useful tool in Computer Aided Geometric

Design applications.
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Several approaches to PH curve characterization have been proposed (see, e.g.,

(Farouki, 2008)). Most of them depend on the dimension of the underlying Euclidean

space Rd. Planar PH curves can be characterized through some identities between

complex numbers (Farouki, 1994) and for spatial curves perhaps the best known ap-

proach to define a hodograph is to use quaternions. An alternative way to define them

is through a Hopf map representation (see, e.g., (Farouki, 2008)). A generalization to

higher dimensions can be done with the help of Clifford algebra (see, e.g., (Choi et al,

2002)). These particular approaches usually simplify computations by PH curves, but

on the other hand they have to be developed for each space dimension separately.

Many approximation schemes that involve PH curves can be found in the literature,

most of them are of the Hermite type (Farouki and Neff, 1995; Albrecht and Farouki,

1996; Meek and Walton, 1997; Jüttler, 2001; Farouki et al, 2003; Jaklič et al, 2010a;

Kwon, 2010). Much less work has been carried out on Lagrange interpolation problems.

In the planar case the only analyzed scheme is given in (Jaklič et al, 2008), while for

spatial curves no results for this type of interpolation are available in the literature.

This is due to the fact that Lagrange interpolation problems are much more difficult to

handle. It is clear that PH curves are important objects in R2 and in R3. But several

practical applications lead to study curves in higher dimensions too. In motion design,

e.g., curves in R4 are frequently used to construct rational motions.

In this paper, we examine the most basic characterization of a PH curve that fol-

lows directly from its definition. A parametric polynomial curve rn : [0, 1] → Rd of

degree ≤ n is a PH curve if the Euclidean norm of its hodograph
‚‚r′n

‚‚ =
p

r′Tn r′n is

the absolute value of a polynomial of degree ≤ n− 1. For regular curves it is actually

a polynomial, since the norm of the hodograph is strictly positive. Although the above

characterization motivated the study of PH curves in detail, it has usually not been

used to solve interpolation or approximation problems involving such curves. Here we

use it directly to two most common geometric interpolation problems, the Hermite and

the Lagrange case and could be extended to the interpolation of higher order geometric

data such as curvature, e.g. Although we use the expression Hermite interpolation, it

is formally correct only for the cubic case. For interpolation schemes using higher de-

gree polynomial curves it is actually Lagrange interpolation with additional geometric

continuity conditions at the boundary points.

A general idea of the approach outlined in the paper is quite simple. A parametric

polynomial curve rn : [0, 1] → Rd that interpolates prescribed data can be expressed

in the polynomial basis that is dual to the interpolation functionals involved. The basis

w depends on particular parameters, yet to be determined. This gives the norm of the

hodograph as ‚‚r′n
‚‚ =

p
w′T Gw′,

where G ∈ Rd×d denotes the corresponding Gram matrix that depends only on the

prescribed data. All the geometric properties of the data interpolated are thus encap-

sulated in the symmetric positive semidefinite matrix G. This also enables us to study

the interpolation problem in the original d-dimensional space without any projections

on its suitable subspace. Further, the remaining free parameters should be chosen in

such a way that the PH condition is fulfilled. However, the equations derived this way

do not depend on the dimension of the space that the data belong to. This unifies

the analysis of the nonlinear systems obtained, which could be carried out entirely in

terms of elements of G. The semidefiniteness of G provides the relations that should

be satisfied by the elements of G if the matrix originates from an interpolation prob-
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lem. It is obvious that such an approach is convenient in practical computations too.

Even though, it is clear from (Jaklič et al, 2008) that the existence analysis is quite a

challenge even for a low degree n. Our approach is an algebraic one, and relies heavily

on the topological Brouwer’s degree argument, a method that turned out fruitful in

similar problems (Kozak and Žagar, 2004; Kozak and Krajnc, 2007a,b; Jaklič et al,

2008).

The paper is organized as follows. The introductory section is followed by three

sections covering the general case. In Section 2, a characterization of PH curves in

Rd is derived as a system of polynomial equations for the coefficients of r′n. The next

section defines the Hermite and Lagrange geometric interpolation problems. Section 4

introduces the homotopy method approach to be used in the existence analysis, and

proves two rather general assertions that are used in the existence considerations.

In Section 5, the results derived for general degree curves are applied to study

the cubic case thoroughly. The first part of the section briefly revisits the Hermite

interpolation problem, but from a new point of view. As a result, geometrically intuitive

necessary and sufficient conditions for the existence of solutions are obtained. Although

this interpolation problem has already been considered in (Wagner and Ravani, 1997;

Jüttler and Mäurer, 1999; Pelosi et al, 2005), the results obtained there do not cover all

the data configurations where the solutions exist. However, recently in (Kwon, 2010),

a complete characterization has been provided and conditions for the existence of the

solution were independently derived for all possible data.

The second part of Section 5 is devoted to cubic PH Lagrange interpolation. This

problem turned out to be much more difficult than the Hermite one. Though the results

obtained are generally comparable with those of the Hermite case, there are also some

significant differences: the number of solutions may reach six compared to two Hermite

solutions, etc. The paper is concluded with some remarks and numerical examples. We

are convinced that the approach suggested could be carried out to some extent for

higher degree problems too given a suitable computer power at will.

2 Characterization of Pythagorean hodograph curves in Rd

Let rn : [0, 1] → Rd : t 7→ rn(t) =
`
rn,i(t)

´d
i=1

be a parametric polynomial curve,

where rn,i ∈ Pn, i = 1, 2, . . . , d. Here Pn denotes the space of real polynomials of

degree ≤ n. Then rn, n ≥ 1, is a Pythagorean-hodograph (PH) curve if and only if its

hodograph, i.e., r′n =
`
r′n,i

´d
i=1

, satisfies

‚‚r′n(t)
‚‚ =

q
r′n(t)T r′n(t) =

vuut
dX

i=1

“
r′n,i(t)

”2
= |σn−1(t)| , t ∈ [0, 1], (1)

for some polynomial σn−1 ∈ Pn−1. If in addition rn is a regular curve then we may

assume σn−1 > 0. Throughout the paper, we shall assume the obvious requirement

n ≥ 1. The norm ‖·‖ denotes the Euclidean norm in Rd, induced by the inner product

uT v and ∠ (u, v) stands for the angle between the vectors u and v.

The following theorem reveals the relations between the coefficients of the hodo-

graph that imply the PH property.
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Theorem 1 Suppose that a polynomial curve rn : [0, 1] → Rd of degree ≤ n is regular

at t = 0, and let

‚‚r′n(t)
‚‚2 =

2n−2X

i=0

αit
i. (2)

Then the curve rn has a Pythagorean hodograph if and only if the coefficients αi satisfy

αi =

n−1X

j=i+1−n

βj βi−j , i = n, n + 1, . . . , 2n− 2, (3)

where all βi depend on α0, α1, . . . , αn−1 only, and are defined recursively as

β0 :=
√

α0, βi :=
1

2β0

0
@αi −

i−1X

j=1

βj βi−j

1
A , i = 1, 2, . . . , n− 1. (4)

Furthermore, σn−1(t) =

n−1X

i=0

βit
i > 0, t ∈ [0, b] ⊆ [0, 1], for some 0 < b ≤ 1.

Proof The proof follows straightforwardly by comparing the coefficients of (2) and

σ2
n−1. ut

Remark 1 Suppose that rn is regular on [0, b]. Since the kernel of the k-th divided

difference [τi, τi+1, . . . , τi+k] is precisely the space of polynomials of degree ≤ k − 1,

the equations (3) are equivalent to

[τ0, τ1, . . . , τj ]
‚‚r′n(.)

‚‚ = 0, j = n, n + 1, . . . , 2n− 2, (5)

where 0 ≤ τ0 < τ1 < · · · < τ2n−2 ≤ b are chosen arbitrarily.

As an example, for n = 3 the system (3) (for α0 6= 0) can be rewritten in an

equivalent form as

8α2
0α3−4α0α2α1+α3

1 = 0, 64α3
0α4−5α4

1+24α0α2α2
1−32α2

0α3α1−16α2
0α2

2 = 0, (6)

and

σ2(t) =
1√
α0

„„
α2

2
− α2

1

8α0

«
t2 +

α1

2
t + α0

«
. (7)

3 Geometric interpolation

Let us now turn our attention to the geometric interpolation, and let us consider the

Lagrange case first. Suppose that a sequence of data points

T j ∈ Rd, j = 0, 1, . . . , n, T j 6= T j+1,

in the Euclidean space Rd, d ≥ 2, is given. A parametric PH polynomial curve rn :

[0, 1] → Rd of degree ≤ n has to be found, for which

rn(tj) = T j , j = 0, 1, . . . , n, (8)
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where

t0 := 0 < t1 < · · · < tn−1 < tn := 1. (9)

Note that the interval of the parameterization can clearly be chosen as [0, 1], since a

linear reparameterization does not affect the interpolation problem considered. How-

ever, the parameters t :=
`
tj
´n−1

j=1
are left unknown. Regardless of this fact, the closed

Lagrange form of the interpolating curve is right at hand, namely

rn =

nX

j=0

T j `j ,

where `j is the j-th Lagrange basis polynomial with respect to the interpolation pa-

rameters (9).

The interpolating polynomial curve has n− 1 free parameters t, which is precisely

the number of equations in (3) that rn has to satisfy to become a PH curve. Let us

examine r′Tn r′n more thoroughly. Since
Pn

j=0 `j ≡ 1,

r′n(t) =

nX

j=0

T j`
′
j(t) =

nX

j=1

`
T j − T 0

´
`′j(t) =

nX

j=1

∆T j−1w′j(t), (10)

where

∆T j−1 := T j − T j−1, wj(t) :=

nX

k=j

`k(t) = 1−
j−1X

k=0

`k(t), w :=
`
wj

´n
j=1

. (11)

This gives

r′n(t)T r′n(t) = w′(t)T Gw′(t), (12)

where G is the Gram data difference matrix, G :=
“
∆T T

i ∆T j

”n−1

i,j=0
. It is well known

(Boyd and Vandenberghe, 2004; Dattorro, 2009) that G carries all the data information.

Let

δi := ‖∆T i‖ , cij := cos θij , θij := ∠
`
∆T i, ∆T j

´
. (13)

The matrix G can be written as

G = DCD, (14)

where D = diag(δ0, δ1, . . . , δn−1) and C = (cij)
n−1
i,j=0 is the interpoint angle matrix

(Dattorro, 2009).

Positive semidefiniteness of the interpoint angle matrix C implies positive semidef-

initeness of the Gram matrix G, which yields the following observation.

Lemma 1 Let the vectors ∆T i, i = 0, 1, . . . , n − 1, be linearly independent. If the

interpolating curve rn exists, it is regular on any bounded parameter interval.

Proof The assumption implies that G is actually positive definite. So the norm
‚‚r′n(t)

‚‚
may by (12) vanish only if w′(t∗) = 0 at some t∗. However, the relation (11) implies

`′i(t
∗) = 0, i = 0, 1, . . . , n, which is clearly a contradiction. Namely, the identity t =Pn

i=0 ti`i(t), derived at t∗, would yield 1 = 0. ut
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A slight modification of the Lagrange interpolation problem gives the G1 interpola-

tion, i.e., geometric Hermite interpolation. In this case, data points to be interpolated

are given as T j ∈ Rd, j = 1, 2, . . . , n − 1, and additionally, the tangent directions d1

and d2, ‖d1‖ = ‖d2‖ = 1, at T 1 and T n−1, respectively, should match too. So the

parametric PH polynomial curve rn : [0, 1] → Rd of degree ≤ n should satisfy

r′n(t1) = λ1d1, rn(tj) = T j , j = 1, 2, . . . , n− 1, r′n(tn−1) = λ2d2,

t1 := 0 < t2 < · · · < tn−2 < tn−1 := 1, λ1 > 0, λ2 > 0. (15)

The unknowns here are the parameter values t2, t3, . . . , tn−2 as well as the tangent

lengths λ1 and λ2. Though one, equipped with the knowledge on the Hermite inter-

polation in the functional case, is tempted to assume that the G1 interpolation could

be understood completely just by following the limit case ∆t0 → 0, ∆tn−1 → 0 of

the Lagrange case, not all of the properties could be established this way (see, e.g.,

(Kozak and Krajnc, 2007a)). Nevertheless, a PH characterization of the interpolant

can be derived in a similar way. The closed form of the interpolant may be written as

rn = λ1d1h0 +

n−1X

j=1

T j hj + λ2d2,

where hj are Hermite basis polynomials. Therefore, one can express the derivative r′n
similarly to (10) as

r′n(t) = λ1d1h′0(t)+
n−1X

i=2

∆T i−1 ew′i(t)+λ2d2h′n(t), ewi(t) :=

n−1X

k=i

hk(t), i = 2, . . . , n−1.

If we define ew := (λ1h0, ew2, ew3, . . . , ewn−1, λ2hn), and use the notation (13) and (14)

with the assumption

∆T 0 → d1, ∆T n−1 → d2, δ0 → 1, δn−1 → 1, (16)

the derivative length reveals as
‚‚r′n

‚‚ =
p
ew′T Gew′, in the form, familiar from (12).

Again, all the data are hidden in the Gram matrix G.

4 Homotopy approach

Determining the existence and the uniqueness of a solution of a system of polynomial

equations that depends on some data parameters, with unknowns restricted to a given

admissible open set D ⊂ Rd, is a difficult task. Nevertheless, there are several known

general approaches one might choose, and one of them is a homotopy analysis, which

turned out as a very efficient tool in many geometric interpolation problems (Kozak and

Žagar, 2004; Kozak and Krajnc, 2007a,b). With this approach, the first, but crucial step

is to understand precisely which data configurations force the unknowns to approach

the boundary of the admissible set D. This way, a part of geometric conditions that may

imply the change in the solution variety is revealed. The other, complementary part

consists of a set where the kernel of the Jacobian of the system is nontrivial since the real

branches of the variety may turn complex and vice versa. The boundary analysis could

be quite tedious since the number of different possibilities to be examined increases

exponentially with the number of unknowns. In this section some general results for the
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Lagrange and Hermite PH interpolation problem are stated that significantly reduce

the number of possibilities to be examined.

In the Lagrange case, the admissible parameter set is given as a simplex

D =
n

(ti)
n−1
i=1 ∈ Rn−1| t0 := 0 < t1 < t2 < · · · < tn−1 < 1 =: tn

o
.

A point t ∈ D approaches the boundary of D if the parameter spacing ∆ti := ti+1 − ti
tends to zero for at least one i. This obviously implies that the interpolatory curve

grows unboundedly at least between two points being interpolated.

Lemma 2 Suppose that the Gram matrix G is nonsingular, and the parameter se-

quence t approaches the boundary of D in such a way that for some constant ε0 > 0,

and for each i ∈ {1, 2, . . . , n} either

∆ti−1 = O (ε) or ε = O (∆ti−1)

holds for all ε, 0 < ε ≤ ε0. Let

νi :=

(
0, ε = O (∆ti−1)

max
0≤j≤i−1

{i− j |∆t` = O (ε) , j ≤ ` ≤ i− 1} , otherwise , i = 1, 2, . . . , n.

If the sequence (νi)
n
i=1 has a unique maximum, the corresponding choice of parameters

t does not determine a regular interpolating curve rn.

Proof Let ω(t) :=
nQ

k=0
(t− tk). Then

`j(t) =

nY

k=0
k 6=j

t− tk
tj − tk

=
1

ω′(tj)

„
ω(t)

t− tj

«
.

Let now i be such that νi > νj , j = 1, 2, . . . , i− 1, i + 1, . . . , n. Then

ω′(tj) = (tj − t0)(tj − t1) · · · (tj − tj−1)(tj − tj+1) · · · (tj − tn) = O `ενi
´

(17)

for i− νi ≤ j ≤ i, and

ενi = O
`
ω′(tj)

´
, j < i− νi, j > i. (18)

Also, for k such that i− νi ≤ k ≤ i, we observe t− tk = t− ti−νi
+O (ε), therefore

ω(t)

t− tj
=

i−νi−1Y

k=0

(t− tk) ·
iY

k=i−νi
k 6=j

(t− tk) ·
nY

k=i+1

(t− tk) =

=

i−νi−1Y

k=0

(t− tk) · (t− ti−νi
)νi ·

nY

k=i+1

(t− tk) +O (ε) =: q(t) +O (ε) .

Let us use these expansions in (11). From (17) and (18) it follows that the Lagrange

basis polynomials with indices i−νi ≤ j ≤ i, are large compared with the others. Thus

wr(t) =

nX

k=r

`k(t) =

nX

k=r
i−νi≤k≤i

`k(t) +O (ε) = const q(t) +O (ε) .
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Since G is nonsingular, from (12) it follows

‚‚r′n(t)
‚‚2 = w′(t)T Gw′(t) = const

`
q′(t)

´2
+O (ε) .

This concludes the proof since q′ obviously has n− 1 zeros in [0, 1]. ut

For the cubic case, there are in general six possibilities that should be considered:

(t1 → 0, t1 < t2 < 1), (t1 → 0, t2 → 0), (t1 → 0, t2 → 1), (0 < t1 < t2, t2 →
1), (t1 → 1, t2 → 1), (0 < t1 → t2 < 1). However, by the lemma only one is left to be

analysed, namely t1 → 0, t2 → 1, where ν1 = 1, ν2 = 0, and ν3 = 1. For the quintic

case the number of critical possibilities to be examined increases to eight. The number

of all possibilities that have to be considered in general is given in (Jaklič et al, 2010b).

Lemma 3 The parameter sequence t cannot approach the boundary of D such that

∆ti−1 = O (ε) , ε → 0, ∆tj−1 ≥ const > 0, j 6= i.

Proof Observe that wi is large compared with the rest of wr, r 6= i. The proof follows

then in a way similar to the proof of Lemma 2. ut

The admissible parameter domain for the G1 case changes to

D =
n

(λ1, λ2)× (ti)
n−2
i=2 |λ1, λ2 > 0, t1 = 0 < t2 < t3 < · · · < tn−2 < 1 = tn−1

o
.

The next lemma explains the behaviour of λ1 and λ2 at the boundary.

Lemma 4 Suppose that the parameter sequence satisfies t1 = 0 < t2 < t3 < · · · <

tn−2 < 1 = tn−1. Any single λi, defined in (15), may not grow unboundedly. If they

both grow unboundedly, then they can grow only as

0 < const1 ≤ λ1

λ2
≤ const2 < ∞, (19)

and then the conditions

[τ0, τ1, . . . , τi]
q

λ2
1h′20 (.) + λ2

2h′2n (.) = 0, i = n, n + 1, . . . , 2n− 3, (20)

should be satisfied, where τj , j = 0, 1, . . . , n − 2, and τj , j = n − 1, n, . . . , 2n − 3, are

zeros of h′0 and h′n, respectively. Further, c0,n−1 should satisfy the equation

[τ0, τ1, . . . , τ2n−2]
q

λ2
1h′20 (.) + λ2

2h′2n (.) + 2λ1λ2h′0 (.) h′n (.) c0,n−1 = 0, (21)

where τ2n−2 ∈ [0, 1] is any value, distinct from all the other τi.

Proof The first assertion is obvious. Suppose that (19) is satisfied. Then, as λi → ∞,

the main part of
‚‚r′n

‚‚ simplifies to

‚‚r′n (t)
‚‚ =

q
λ2

1h′20 (t) + λ2
2h′2n (t) + 2λ1λ2h′0 (t) h′n (t) c0,n−1 +O

„
1

λi

«
.

From the basis (hi)
n
i=0 it is straightforward to conclude that each of the polynomials

h′0 and h′n has n− 1 distinct zeros in [0, 1], but no common one. So we can apply the

defining PH equations in the form (5) based upon these zeros and one additional point

τ2n−2. The assertion follows. ut
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5 Cubic case

The general results from previous sections will now be used to analyze the cubic Her-

mite and Lagrange interpolation problem. As usual, it turns out that the Lagrange

problem is much more difficult than the Hermite one. In the Hermite case, not only

the conditions for the existence of admissible solutions, but also the explicit formulae

can be given. In the Lagrange case the equations are much more complicated, and

using homotopy seems the most convenient approach.

By (14), the Gram matrix is of the form

G =

0
@

δ0
δ1

δ2

1
A
0
@

1 c01 c02
c01 1 c12
c02 c12 1

1
A
0
@

δ0
δ1

δ2

1
A ,

where in the Hermite case an additional assumption (16) has to be applied.

By the theory on Euclidean distance matrices (Dattorro, 2009), the constants cij

are not independent, namely

(c02 − c01c12)
2 ≤

“
1− c201

”“
1− c212

”
. (22)

The equality is reached if and only if the vectors ∆T 0, ∆T 1, and ∆T 2 are coplanar.

Furthermore, the rank of the matrix G drops to 1 only if |c01| = |c12| = |c02| = 1, in

the case δi > 0, for all i. This corresponds to the Lagrange case with data lying on the

same line. The rank of G is equal to 1 also if δ1 = 0 and |c02| = 1 (in the Hermite case

T 1 and T 2 coincide). Thus the nonplanar data must satisfy δi > 0, i = 0, 1, 2, and

(c02 − c01c12)
2 <

“
1− c201

”“
1− c212

”
, which implies |c01| < 1, and |c12| < 1.

Note that the condition (22) has a clear geometric meaning. It is equivalent to

(c01 + c12)
2

2(1 + c02)
+

(c01 − c12)
2

2(1− c02)
≤ 1, if c02 ∈ (−1, 1), (23)

or c02 = ±1, c01 = ±c12. For every fixed |c02| < 1, the boundary of the region defined

by (22) is an ellipse that reduces to a line segment at |c02| = 1.

Remark 2 From the theoretical as well as from the practical point of view it is im-

portant to know in advance when the interpolatory PH curve transforms continuously

to the planar case solution as the data do. And vice versa. Quite clearly, a true space

solution may turn unbounded or irregular if the data continuously reduce to the planar

case. In the opposite direction, a planar solution could always be extended to a nearby

true space case if the Implicit function theorem could be applied on equations that

determine curve parameters.

5.1 Hermite case

The analysis of the cubic Hermite PH interpolation is straightforward, and can be done

without a homotopy approach. The interpolating curve is given as

r3(t) = λ1t(1− t)2d1 + (1− t)2(2t + 1)T 1 + (3− 2t)t2T 2 − λ2t2(1− t)d2,

and

h′0(t) = (1− t)(1− 3t), h′3(t) = t(3t− 2).
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The coefficients αi, defined in Theorem 1, are

α0 = λ2
1, α1 = −4λ1 (−3δ1c01 + c02λ2 + 2λ1) ,

α2 = −12δ1 (5c01λ1 + 2c12λ2) + 22λ1 (c02λ2 + λ1) + 36δ2
1 + 4λ2

2,

α3 = −12
“
−δ1 (7c01λ1 + 5c12λ2) + 3c02λ1λ2 + 6δ2

1 + 2λ2
1 + λ2

2

”
,

α4 = 9
“
−4δ1 (c01λ1 + c12λ2) + 2c02λ1λ2 + 4δ2

1 + λ2
1 + λ2

2

”
.

With αi expressed this way, the equations (6) turn out as a system of two polynomial

equations of total degree 12 for the unknowns λ1 and λ2. The first equation of the

corresponding Gröbner basis, computed by using the lexicographic monomial ordering

with respect to variables (λ2, λ1), factors as

δ3
1λ2

1(1− c201)
2
“
−
“
1− c02

”
(1 + 2c02) λ2

1 + 3δ1 (3c01 + (1− 4c02) c12) λ1 − 18δ2
1(1−

− c212)
”“

− (1− c02) (1 + 2c02) λ2
1 + 3δ1 (3c01 − (4c02 + 1) c12) λ1 − 18δ2

1(1− c212)
”
.

The solution λ1 = 0 is not admissible, and four possible solutions are left. If we combine

these four zeros λ1 with the rest of the Gröbner basis, we obtain four possible solution

pairs. With the help of the functions

g1 (x, y, w) := (1− w)x +

„
1

2
+ w

«
y,

g2 (x, y, w) := g1(x, y, w)2 − (1− w)

„
1

2
+ w

«“
1− (x− y)2

”
, (24)

ζ± (x, y, w) :=
3δ1

“
1− (x− y)2

”

g1(x, y, w)±
p

g2(x, y, w)
,

the four solution pairs
`
λ1,i, λ2,i

´
, i = 1, 2, 3, 4, are simplified to

λ1,1 = ζ+
“ c01 + c12

2
,
c01 − c12

2
, c02

”
, λ2,1 = ζ+

“ c01 + c12
2

,
c12 − c01

2
, c02

”
,

λ1,2 = ζ−
“ c01 + c12

2
,
c01 − c12

2
, c02

”
, λ2,2 = ζ−

“ c01 + c12
2

,
c12 − c01

2
, c02

”
,

(25)

λ1,3 = ζ−
“ c01 − c12

2
,
c01 + c12

2
,−c02

”
, λ2,3 = ζ+

“c12 − c01
2

,
c01 + c12

2
,−c02

”
,

λ1,4 = ζ+
“ c01 − c12

2
,
c01 + c12

2
,−c02

”
, λ2,4 = ζ−

“c12 − c01
2

,
c01 + c12

2
,−c02

”
.

Quite clearly, g2 (x, y, c02) > g2
1 (x, y, c02) , −1 < c02 < − 1

2 , |x − y| < 1. So the first

pair
`
λ1,1, λ2,1

´
is admissible for this c02 range, but the second one

`
λ1,2, λ2,2

´
is not

since

ζ+ (x, y, w) ζ− (x, y, w) = 18δ2
1

1− (x− y)2

(1− w)(1 + 2w)
(26)

implies λ1,2, λ2,2 < 0. As c02 ↑ − 1
2 , we observe that λ1,1, λ2,1 →∞ if

g1

„
c01 + c12

2
,
c01 − c12

2
,−1

2

«
=

3

4
(c01 + c12) ≤ 0.

However, if c01 + c12 > 0, this pair continuously crosses the boundary c02 = − 1
2

(Fig. 1, left). A cross-cut at c02 = − 1
4 is shown in Fig. 1 (right).
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Fig. 1 The admissible parameter regions at c02 = − 1
2

(left) and at c02 = − 1
4

(right). The
black boundary is determined by (22), the dark gray one by g2 = 0, the dashed line seg-

ments correspond to g1

“
c01+c12

2
, c01−c12

2
, c02

”
= 0, g1

“
c01+c12

2
, c12−c01

2
, c02

”
= 0, and the

admissible area is coloured bright gray.

If c02 > − 1
2 , the equation (26) shows that the first and the second pair are both

admissible or not at the same time. From the symmetry g2(x, y, w) = g2(−x, y, w) =

g2(x,−y, w) we observe that it is enough to require

g2

“ c01 + c12
2

,
c01 − c12

2
, c02

”
≥ 0

or, simplified

3 (c01 + c12)
2

4 (1 + 2c02)
+

3 (c01 − c12)
2

8 (1− c02)
≥ 1, (27)

to make the pairs real. Note that for every c02 ∈ `− 1
2 , 1
´

we have g2 (x, y, c02) <

g2
1 (x, y, c02) , |x− y| < 1, so it seems necessary to verify

g1

“ c01 + c12
2

,
c01 − c12

2
, c02

”
> 0, g1

“ c01 + c12
2

,
c12 − c01

2
, c02

”
> 0

in order to guarantee λ1,2 > 0, λ2,2 > 0. However, this is not needed. Since (27) should

hold, this can be simplified to c01+c12 > 0. By a similar approach, it can be shown that`
λ1,3, λ2,3

´
and

`
λ1,4, λ2,4

´
cannot be admissible. The admissible region as a whole is

shown in Fig. 2.

Let us summarize the discussion.

Theorem 2 Suppose that nonplanar data d1, T 1, T 2, and d2 are prescribed, i.e.,

(c02 − c01c12)
2 <

“
1− c201

”“
1− c212

”
.

Then there is precisely one interpolant (determined by (λ1,1, λ2,1) in (25)), iff

−1 < c02 < −1

2
or c02 = −1

2
, c01 + c12 > 0.
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If c02 > − 1
2 then the interpolation problem has two solutions (given by the pairs`

λ1,1, λ2,1
´
, and

`
λ1,2, λ2,2

´
), iff

c01 + c12 > 0, g2

“c01 + c12
2

,
c01 − c12

2
, c02

”
≥ 0. (28)

Otherwise, there are no solutions. The two solution pairs coincide iff in the last relation

of (28) the equality is reached.

If the data reduce to a planar problem, the solutions determined by Theorem 2 may

be followed by continuity to the boundary. By Remark 2, the only possible exceptions

are planar data where a space solution may turn unbounded or irregular.

Theorem 3 Suppose that planar data that satisfy δ1 > 0, |c01| |c12| < 1, are reached

as a limit of space data problems that satisfy requirements of Theorem 2. The solution

pairs
`
λ1,i, λ2,i

´
determined by Theorem 2 could be almost always continuously traced

to planar data solution. The exceptions are

a) c02 = −1

2
, c12 + c02 ≤ 0, the solution

`
λ1,1, λ2,1

´
becomes unbounded,

b) c02 = −1

2
, c12 + c02 ≥ 0, the solution

`
λ1,2, λ2,2

´
becomes unbounded,

c) c01 = 1, (c12 = c02), or c12 = 1, (c01 = c02), the solution
`
λ1,1, λ2,1

´
turns

irregular.

Proof The first two exceptions follow from (25), just by taking the limits c02 ↑ − 1
2

and c02 ↓ − 1
2 respectively. By the assumptions of the theorem, the solution may turn

irregular only if one of lambdas becomes equal to 0. This follows from the fact that

the only irregular planar cubic PH curves are line segments (see, e.g., (Farouki and

Sakkalis, 1990)). From (24) and (25) we observe that λ1,i may vanish only if

“
1− c212

”
(1− c02) (1 + 2c02) = 0.

The factor 1 − c02 cannot vanish since the only admissible choice is then c02 = 1,

c01 = 1, c12 = 1, excluded by the assumption. The possibility 1 + 2c02 = 0 must be

Fig. 2 The admissible choice of parameters c01, c12, and c02.
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studied for the solution
`
λ1,1, λ2,1

´
only. If c02 = − 1

2 , c01 + c12 > 0, then

`
λ1,1, λ2,1

´
= 2δ1

„
1− c212

c01 + c12
,

1− c201
c01 + c12

«

determines a regular solution if |c01| < 1, |c12| < 1. So only |c12| = 1 may imply

λ1,i = 0. A brief inspection of the four possibilities in the closed form solutions (25)

gives only one possible choice c12 = 1, λ1,1 = 0. The possibility λ2,i = 0 follows

similarly. ut
It is straightforward to determine the irregular cubic curves observed in Theorem 3.

They are line segments

T 1 + ∆T 1 t3, T 2 −∆T 1 (1− t)3. (29)

So far we have assumed δ1 > 0. However, also the case T 1 = T 2 implies planar

data. As T 2 → T 1, the solutions obtained in Theorem 2 turn out irregular. However,

the Jacobian of the system (6) becomes singular, and there are infinitely many planar

only solutions, which confirms the well-known behaviour of Tschirnhausen cubics at

the double point.

Theorem 4 The planar problem T 1 = T 2, d2 6= d1, has a solution only if c02 = − 1
2 .

In this case, any pair λ1 = λ2 > 0 determines a regular interpolant.

Proof Suppose that δ1 = ‖∆T 1‖ → 0. The closed form (25) gives a trivial solution

only. For this reason we reexamine the equations (6) that simplify in this case to
“
1− c202

”
(λ1 + 2c02λ2) = 0, −

“
1− c202

”“
7λ2

1 + 22c02λ2λ1 + 4λ2
2

”
= 0. (30)

Since d1 6= d2, then c02 6= 1, and since c02 = −1 does not imply a regular interpolant,

it follows 1− c202 6= 0. The first equation in (30) then implies λ1 = −2c02λ2 and conse-

quently c02 < 0. Considering this in the second equation we obtain
“
1− 4c202

”
λ2

2 = 0,

and the assertion of the theorem follows. ut
Let us conclude the Hermite case. It is straightforward to verify that we obtain the

trivial 1-dimensional (line) case if c01 = c12 → 1, c02 → 1. Any pair λ1 > 0, λ2 > 0 that

satisfies 6δ1 (λ1 + λ2) > 9δ2
1 + λ2

1 + λ2
2 + λ1λ2, or λ1 + λ2 ≤ 3δ1 is admissible. Also,

there is no regular solution if c01 = c12 → −1, c02 → 1, or c01c12 → −1, c02 → −1.

5.2 Lagrange case

The analysis of the Lagrange PH interpolation is more complex. The curve r3 in-

terpolates four data points. The interpolation conditions are given by the equations

(8) where parameter values t1 and t2 are to be determined. The corresponding Gram

matrix G depends on six data constants

δ0 > 0, δ1 > 0, δ2 > 0, −1 ≤ c01 ≤ 1, −1 ≤ c12 ≤ 1, −1 ≤ c02 ≤ 1. (31)

The norm of the tangent vector is by (2), (12) and (7) given as

‚‚r′3(t)
‚‚ =

vuut
4X

i=0

αiti =
q

w′(t)T Gw′(t) = σ2(t), t ∈ [0, 1]. (32)
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and the nonlinear equations that determine t1 and t2 are given by (6) with αi, i =

0, 1, . . . , 4, expressed from (32). It is straightforward to rewrite these equations in the

polynomial form

e1(t1, t2) = 0, e2(t1, t2) = 0. (33)

The polynomials e1 and e2 are of total degree ≤ 15 and ≤ 14 respectively, and are too

large to be written explicitly. Note that any admissible solution of (33) should satisfy

α0 6= 0 too.

Let us examine the boundary of the admissible ti first. There are six possible ways

how the unknown parameters t1 and t2 could approach the boundary of D. However,

Lemma 2 reduces the possibilities to be examined in the nonplanar case to a single

one,

t1 = τ1ε +O
“
ε2
”

, t2 = 1− τ2ε +O
“
ε2
”

, τ1, τ2 > 0. (34)

Lemma 5 Suppose that the solution of (33) has an expansion of the form (34) for all

ε small enough. Then this expansion should read

t1 = δ0τε+O
“
ε2
”

, t2 = 1−δ2τε+O
“
ε2
”

, τ > 0, c02 = cos ∠ (∆T 0, ∆T 2) = −1

2
.

Proof Let us insert (34) in the equations (33). The expansions obtained are

e1(t1, t2) = δ3
0δ2

2τ2

“
1− c202

”
(2δ2τ1c02 + δ0τ2) ε2 +O

“
ε3
”

= 0,

e2(t1, t2) = δ2
0δ2

2

“
1− c202

”“
4 (δ0τ2 + δ2τ1) (δ0τ2 − δ2τ1)

− 11δ0τ2 (2δ2τ1c02 + δ0τ2)
”
ε2 +O

“
ε3
”

= 0.

The first two possible asymptotic solutions c02 = ±1 +O (ε) are ruled out, since then

σ2(t) =
1

ε

„
3

„
δ0
τ1
± δ2

τ2

«
t2 − 2

„
2
δ0
τ1
± δ2

τ2

«
t +

δ0
τ1

«
+O (1) ,

and σ2 necessarily changes sign in [0, 1]. On the other hand, if 2δ2τ1c02 + δ0τ2 = 0,

the second asymptotic equation implies δ2τ1 = δ0τ2, and c02 = − 1
2 follows. ut

In the planar case, additional approaches to the boundary of D may appear. Three

possibilities are ruled out by Lemma 3, and there are the remaining two to be considered

only.

Lemma 6 The parameters t1 and t2 could approach the boundary of D if c201 → 1 or

c212 → 1 too. In this, necessarily planar, case they expand as

t1 = ε +O
“
ε2
”

, t2 = (1 + τ1)ε +O
“
ε2
”

, τ1 > 0, (35)

and

t1 = 1− (1 + τ2)ε +O
“
ε2
”

, t2 = 1− ε +O
“
ε2
”

, τ2 > 0,

respectively.

Proof Let us assume (35). The second polynomial then expands as

e2(t1, t2) = −4δ2
0δ2

1

“
1− c201

”“
δ2
0τ2

1 − 2δ1δ0τ1c01 + δ2
1

”
ε2 +O

“
ε3
”

.

Since the term δ2
0τ2

1 − 2δ1δ0τ1c01 + δ2
1 cannot vanish, the first assertion is proved. The

other one follows similarly. ut
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If the data points are restricted to a line, obviously solutions exist only if c01 =

c12 = c02 = 1, and in this case there are infinitely many of them. So we may from now

on to the end of the section assume that the points are not taken from a line. Theorem 3

proves that a spatial PH curve may turn irregular when continuously changed to a

planar one only if it is of the form (29). However, for the Lagrange case, this implies

that limit planar data are obtained from a line segment. Since we have already excluded

this possibility, the only possible planar exceptional data are determined by Lemma 5

and Lemma 6. In order to proceed we need the following lemma.

Lemma 7 Suppose that % ∈ [0, 1). Let the data points be chosen as

T 0 =

0
@
−1− %p
1− %2

0

1
A , T 1 =

0
@
−1

0

0

1
A , T 2 =

0
@

1

0

0

1
A , T 3 =

0
@

1 + %p
1− %2

0

1
A . (36)

The PH interpolation problem has a solution for any % ∈ [0, 1). The corresponding

interpolation parameters 0 < t1 < t2 < 1 are determined by

4t1(% + 1)(t1(6t1(2t1(% + 1)− 4%− 3) + 19% + 8)− 7% + 1) + 4%2 − 1 = 0,
(37)

t2 = 1− t1.

For the range % ∈ [0, 1
2 ], the admissible solution, denoted by

“
t+1 , t+2

”
, is unique. For

any % ∈ ( 1
2 , 1) there are two distinct solution pairs

“
t±1 , t±2

”
that satisfy (37), and they

are also the only solutions in the range ( 1
2 , %̄), %̄ ≈ 0.992989 (Fig. 3). Both solutions

are simple (i.e., Jacobian is nonsingular).

Proof From (36), it is straightforward to compute the corresponding Gram matrix

parameters (31) as δ0 = δ2 = 1, δ1 = 2, c01 = c12 = %, c02 = 2%2 − 1. Thus the

symbolic equations (33) for the data (36) depend on three parameters t1, t2, and %

only. However, a direct approach that examines the structure of the ideal I (e1, e2)

with the help of the Gröbner basis or resultants failed. This is due to the fact that the

polynomials involved in equations (33) are of total degrees 21 and 32 in these three

variables, and when expanded they consist of 584 and 1860 terms respectively. So the

proof follows a rather long way around. At several places in the proof, we will use the

notation π`(. . . ) to denote a polynomial of the total degree ≤ ` in variables (. . . ).

Let us divide the equations (6) by α2
0 and α3

0 respectively in order to exclude the

possibility α0 = 0. Further, let us compute the Gröbner basis of the rationals involved

with respect to variables (α1, α2, α3, α4, α0). This reveals one of polynomial basis of

the ideal of the equations (6) (with α0 6= 0 assured) as

g := (gi)
9
i=1 :=

“
α4

3 − 8α2α4α2
3 − 64α0α3

4 + 16α2
2α2

4, α3
3 − 4α2α4α3 + 8α1α2

4, −4α4α2
2

+ α2
3α2 + 16α0α2

4 + 2α1α3α4, −8α4α3
2 + 2α2

3α2
2 + 32α0α2

4α2 + α1α3
3 + 8α0α2

3α4,

− α1α2
3 − 8α0α4α3 + 4α1α2α4, α2

1α4 − α0α2
3, α3α2

1 + 8α0α4α1 − 4α0α2α3,

16α4α2
0 − 4α2

2α0 + 2α1α3α0 + α2
1α2, α3

1 − 4α0α2α1 + 8α2
0α3

”
. (38)

Let us now insert αi = αi (t1, t2, %) obtained from (32) for the particular data (36) in

the basis (38). The polynomials gi become rational functions of t1, t2, and %, with the

common denominator of the terms in gi being either

(1− t1)
4 t41 (t2 − t1)

4 (1− t2)
4 t42, i ∈ {2, 3, 5, 6, 7, 8, 9},
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or

(1− t1)
6 t61 (t2 − t1)

6 (1− t2)
6 t62, i ∈ {1, 4}.

Thus we can bring these functions again to the polynomial form, and simplify them by

leaving out constant factors or factors 1 − %2, since they cannot vanish. The resulting

polynomials will be denoted g (t1, t2, %) = (gi (t1, t2, %))9i=1 . By the construction, the

system of polynomial equations g (t1, t2, %) = 0 is equivalent to the equations (33), and

the fact that we have split two equations into several ones will help us to proceed with

the proof. The second polynomial factors as

g2 (t1, t2, %) = (1− (t1 + t2)) (1− (1 + %)(t2 − t1)) π10(t1, t2, %), (39)

with π10(t1, t2, %) being a particular polynomial of total degree 10. The equation

g2(t1, t2, %) = 0 implies that at least one of factors in (39) should vanish. Suppose

first that t2 = 1 − t1. Then the Gröbner basis of g (t1, 1− t1, %), computed with re-

spect to (t1, %), reads

(1− t1)
2 t21 π6(t1, %)

“
%3(% + 2)3,−%(% + 2) (%(5%(% + 3) + 4)− 12t1) ,

12t1% + 12t21 − (2%(% + 4) + 5)%2
”
, (40)

π6(t1, %) := 4t1(% + 1) (t1 (6t1 (2t1(% + 1)− 4%− 3) + 19% + 8)− 7% + 1) + 4%2 − 1.

Note that (40) can vanish only if π6 satisfies the equation π6(t1, %) = 0, % ∈ [0, 1), even

at % = 0. The solutions t1 = t1(%) of this equation can be found in a closed form

t1
+

t2
+

t1
-

t2
-

0.0 0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0
t1,t2

Fig. 3 The solution pairs
“
t±1 (%), t±2 (%)

”
, % ∈ [0, 1) for the particular data (36), determined

by the equations π6(t1, %) = 0, t2 = 1− t1.

(Fig. 3), and are both simple. Thus the solutions could be continued to the solutions

of a near true space problem. The existence assertion of the lemma is confirmed.

In order to complete the proof we have to show that there is no other admissible

solution distinct from t2 = 1 − t1, at least for 0 ≤ % < %̄, if the second or the third

factor in (39) vanishes. Suppose that 1− (1 + %)(t2 − t1) = 0. Then

% = −1 +
1

t2 − t1
, (41)

and the first equation simplifies to

g1

„
t1, t2,−1 +

1

t2 − t1

«
= 9 (1− (t1 + t2))

6
“
t21 + 2 (t2 − 2) t1 + t22

”2
.
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Since only the last factor could vanish, the only admissible possibility to be examined

is t2 = −t1 + 2
√

t1. However, such a t2, inserted in (41), yields

% =
−2t1 + 2

√
t1 − 1

2
`√

t1 − 1
´√

t1
≥ 1, t1 ∈ (0, 1),

which rules out the possibility that the second factor in (39) is equal to zero.

Let us consider now the last possibility, π10(t1, t2, %) = 0. If the polynomials π10

and g3 have a common root %, their resultant r2,3, computed with respect to %, should

vanish. It turns out as

r2,3(t1, t2) = 9216 (1− t1)
2 t21 (t2 − t1)

12 (1− t2)
2 t22 (1− t1 − t2)

4 π4
2 (t1, t2) π14 (t1, t2) ,

with π2 (t1, t2) := t21 +2t2t1−4t1 +t22, and π14 (t1, t2) being a particular polynomial of

total degree 14. Since the other factors in r2,3 are extraneous, only π14 and π2 have to

be examined. Consider now Fig. 4. The figure shows that a variety, determined by the

product π14 π2 and the curves π10(t1, t2, %) = 0, % ∈ [0, 1), have no common solution

point (t1, t2), except for a small part below the line t2 = t1 + 1
2 . First of all, it is

0.1 0.2 0.3 0.4 0.5
t1

0.6

0.7

0.8

0.9

1.0

t2

Fig. 4 Solutions of π10(t1, t2, %) = 0, % ∈ [0, 1) (black), and the curves determined by
π2(t1, t2) = 0 and π14(t1, t2) = 0, respectively (gray). The dotted line t2 = t1 + 1

2
sepa-

rates the major part of both varieties.

straightforward to verify that π14(t1, t2) > 0, π2(t1, t2) > 0, 1
2 ≤ t1 + 1

2 < t2 < 1, and

only the points below the line t2 = t1 + 1
2 ,

Ξ :=


(t1, t2)

˛̨
˛ 0 < t1 < t2 < 1, t2 ≤ t1 +

1

2

ff
,

are to be considered. The polynomial π10 simplifies at the boundary of Ξ, and with

the help of the cylindrical algebraic decomposition it is easy to verify that any solution

branch of the equation

π10(t1, t2, %) = 0, % ∈ [0, 1), (42)

could cross the boundary of Ξ only at (t1, t2) = (0, 0) or (t1, t2) = (1, 1). This implies

that any solution branch of (42) in Ξ, distinct from an acnode, which is free of cusps,
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should include a point with tangent direction equal to ±(1, 1) too. This gives us an

impetus to study these points closely. They are determined by equations

π10(t1, t2, %) = 0,
∂π10

∂t1
(t1, t2, %) +

∂π10

∂t2
(t1, t2, %) = 0. (43)

The equations are easier to be considered in new variables ν1 := t2 + t1, ν2 := t2 − t1.

The left-hand side of the second equation in (43) simplifies to

2 (1− ν1) π9(ν1, ν2, %), (44)

π9(ν1, ν2, %) := (ν2(% + 1) (ν2(% + 1) (ν2% + ν2 + 5) + 5) + 1) ν2
1

− 2 (ν2(% + 1) (ν2(% + 1) (ν2% + ν2 + 5) + 5) + 1) ν1 + ν2

“
ν4
2

“
−(% + 1)3

”

−3ν3
2 (% + 1)2 + 2ν2

2(% + 1)(3% + 4) + 2ν2(% + 2)(2% + 3) + 2(% + 1)
”

.

Suppose that ν1 = 1. Then the polynomial π10 reduces to

π10

„
1− ν2

2
,

1 + ν2

2
, %

«
=

1

4

“
1− ν2

2

”
(ν2(% + 1)− 1)

·
“
ν4
2 (% + 1)2 + 2ν3

2 (% + 1)− ν2
2 (% + 2)(% + 4) + 2ν2(% + 1) + 1

”
.

Clearly, only the last factor can vanish, thus the equation π10

“
1−ν2

2 , 1+ν2
2 , %

”
= 0 has

two solutions ν2 for any % ∈ [0, 1). These solutions both satisfy 1
2 < ν2 < 1 as suggested

by Fig. 4. If ν1 6= 1, the polynomial π9 in (44) must vanish. The first polynomial of

the Gröbner basis of π10 and π9, computed with respect to (ν1, ν2, %), is equal to

ν2
2π12(ν2, %),

π12(ν2, %) :=− ν4
2 (% + 1)2

“
4%
“
4%2 + 2%− 5

”
− 13

”
+ 4ν6

2 (%− 1)(% + 1)5

+ 16ν5
2(%− 1)(% + 1)4 − 2ν3

2(% + 1)(2%(5%(2% + 3)− 8)− 25)

+ ν2
2 (4%(2%(2%(% + 1)− 3)− 3) + 13) + 16ν2(%− 1)(% + 1)2 + 4%2 − 4.

This polynomial should vanish if the equations (43) hold. Additionally, π9(ν1, ν2, %) = 0

should hold too. However, π9 is a quadratic function in ν1, with the discriminant equal

to

4 (ν2% + ν2 + 1) (ν2(% + 1) (ν2% + ν2 + 4) + 1) π8(ν2, %),

π8(ν2, %) :=ν2

“
ν4
2(% + 1)3 + 3ν3

2 (% + 1)2 + ν2
2(% + 1)

· ((%− 4)%− 7) + ν2(%− 4)%− 7ν2 + 3% + 3
”

+ 1.

The polynomial π8 clearly decides the sign of the discriminant. The cylindrical algebraic

decomposition, applied to

0 ≤ % < 1, 0 < ν2 < 1, π12(ν2, %) = 0, π8(ν2, %) ≥ 0, (45)

reveals that the conditions (45) could only be met if % ∈ [%, 1), where % ≈ 0.992989 is

the only root of the polynomial

32768%12 + 190464%11 + 77088%10 − 1775104%9 − 4372800%8 − 538464%7 + 10093184%6

+ 9967536%5 − 5709618%4 − 12201948%3 − 1981854%2 + 4357152% + 1860867
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in [0, 1). This shows that the intersection of the variety (42) and Ξ is empty for % < %,

and the lemma is confirmed. ut

Remark 3 Lemma 7 opens the door for possible additional admissible solutions in the

range % ≤ % < 1. There are actually six admissible solutions in a subinterval of [%, 1).

Without going into details we provide the numerical evidence only, given in Fig. 5.

Note also that at % = 1, i.e., the data prescribed on a line, the number of admissible

solutions is infinite.

Ρ 0.994 0.996 0.998 1.000
Ρ

0.2

0.4

0.6

0.8

1.0
t1,t2

-3 -2 -1 1 2 3

-0.1

0.1

0.2

0.3

0.4

0.5

Fig. 5 Six solution parameter pairs (t1(%), t2(%)) for the data (36) (left) and six interpolants
at % = 997

1000
(right).

Based upon Lemma 5 and Lemma 7, the following theorem gives sufficient condi-

tions for the existence of a regular cubic interpolating PH curve for the particular c02
range.

Theorem 5 Suppose that the data points

T i ∈ Rd, i = 0, 1, 2, 3, T i 6= T i+1,

satisfy

−1 ≤ c02 < −1

2
, |c01| 6= 1, |c12| 6= 1. (46)

Then there exists a regular cubic PH curve that interpolates the given points.

Proof Let us choose the parameter % introduced in Lemma 7 as % =
q

1+c02
2 , and let

the particular data points (36) be denoted by T ∗i . The associated parameters are

c∗02 = 2%2 − 1 = c02 < −1

2
, c∗01 = c∗12 = % ≥ 0, δ∗0 = δ∗2 = 1, δ∗1 = 2,

and the corresponding nonlinear system (33): e∗1(t1, t2) = 0, e∗2(t1, t2) = 0, has a

unique solution (t∗1, t∗2) ∈ D that determines the Lagrange problem solution. Thus the

Brouwer’s degree of the particular map (t1, t2) → (e∗1 (t1, t2) , e∗2 (t1, t2)) , (t1, t2) ∈ D,
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is odd. It is straightforward to connect by a homotopy the particular map with a

general one that corresponds to the data T i. At first step of the homotopy path, we

change only lengths between data points by δi(ξ) := (1 − ξ)δ∗i + ξδi, ξ ∈ [0, 1]. Then,

since c∗02 = c02 = const < − 1
2 , we connect the particular pair (c∗01, c∗12) with the pair

of general parameters (c01, c12) that satisfy (46), by a line segment which lies entirely

inside the closed ellipse

(c01 + c12)
2

2(1 + c02)
+

(c01 − c12)
2

2(1− c02)
≤ 1,

and avoids points |c01| = 1, |c12| = 1. By Lemma 5 and Lemma 6 the homotopy

constructed never vanishes at the boundary of D. Thus the Brouwer’s degree stays odd

also for the general data, which implies the existence of the solution. ut

Theorem 5 leaves out the question of the uniqueness of the solution. Quite clearly,

one should study the Jacobian along the solution of the equations (33). However, this

turned out far too demanding for the computer power at will.

As already observed in the Hermite case, the range c02 ≥ − 1
2 is more difficult to

analyse. This becomes even more evident in the Lagrange case. Let us conclude the

section by considering some numerical observations for this c02 range (Fig. 6). The

gray region indicates the region where at least two solutions should exist. Note that for

some data there should exist several solutions, at least near the planar case discussed in

Remark 3. The region is terminated by a black curve, that marks the cosines where the

Jacobian of the system (33) at the solution is singular. The numerical results indicate

that there are no solutions elsewhere.

-1.0 -0.5 0.5 1.0
c01

-1.0

-0.5

0.5

1.0

c12

-1.0 -0.5 0.5 1.0
c01

-1.0

-0.5

0.5

1.0

c12

Fig. 6 The data where at least two solutions are expected (gray region) and the data where
the solution is double (black curve) for δ = (2, 1, 3) with c02 = − 1

4
(left) and c02 = 1

3
(right).

6 Numerical examples

It is straightforward to compute a numerical solution of the Hermite PH interpolation

problem, but for the Lagrange case a remark should be added. The nonlinear system of

equations (33) is a polynomial one. However, a straightforward application of a general

solver that computes all the solutions of a polynomial system of equations would be a

waste of computer time, and may lead to insufficient numerical accuracy of the result.
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Instead, a continuation method (see (Allgower and Georg, 1990)) based upon theoret-

ical existence considerations should be applied. With constants δ0, δ1, δ2, c01, c02, and

c12 prescribed, Lemma 7 provides all solution pairs (t1, t2) for the problem

% =

r
1 + c02

2
, c∗02 = c02, c∗01 = c∗12 = %, δ∗0 = δ∗2 = 1, δ∗1 = 2.

If there is more than one solution pair, we select a particular one, which should be

followed. Further, we construct a homotopy that connects the particular and the gen-

eral data, and apply the continuation method. For most of possible data situations, a

homotopy based upon lines

c01(s) = (1− s)% + s c01 c12(s) = (1− s)% + s c12

δi(s) = (1− s) + sδi, i = 0, 2 δ1(s) = 2(1− s) + sδ1,

where s ∈ [0, 1], is appropriate. This approach turned out to be very efficient, and only

a few predictor steps along the homotopy path were usually required.

Let us conclude the paper with illustrative numerical examples, which demonstrate

a cubic Lagrange interpolation in R4 and a quintic Lagrange interpolation in R3. Sup-

pose that the given data points are

T 0 =

0
BB@

0

10

0

0

1
CCA , T 1 =

0
BB@

0

13

1

1

1
CCA , T 2 =

0
BB@

2

16

4

3

1
CCA , T 3 =

0
BB@

10

20

10

5

1
CCA . (47)

The corresponding parameters are

δ0 =
√

11, δ1 =
√

26, δ2 = 2
√

30, c01 = 7

r
2

143
, c02 =

r
10

33
> −1

2
, c12 =

5

2

r
5

39
,

and two solutions exist,

(t+1 , t+2 ) = (0.273230, 0.608113), (t−1 , t−2 ) = (0.087184, 0.791055),

which corresponds to numerical indications for c02 > −1/2.

For a geometric interpretation of the obtained cubic interpolants we borrow the

results from the motion design. Every point in R4 (space of quaternions) uniquely

determines a rotation in R3, and a curve in a quaternion space determines a spherical

part of a motion of a rigid body (Farin et al, 2002, Chap. 29). The corresponding

spherical motions of this example are shown in Fig. 7. The plus solution (left) seems

nicer than the minus solution (right).

The second example is just a numerical step outside the rigorous analysis of the

cubic case. Suppose that points T i,

T 0 =

0
@

0

0

0

1
A , T 1 =

0
@
−3

4

2

1
A , T 2 =

0
@
−4

7

4

1
A , T 3 =

0
@
−4

10

5

1
A , T 4 =

0
@
−4

12

6

1
A , T 5 =

0
@
−4

13

8

1
A
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Fig. 7 Spherical parts of the motion of a tetrahedron with four interpolated positions (dark
gray) given by (47). The left figure is induced by the plus, and the right one by the minus
solution.

are to be interpolated by a quintic PH curve. The equations (3) give four admissible

solutions

i t1 t2 t3 t4
1 0.0798998 0.44531 0.588504 0.682577

2 0.120688 0.383729 0.620533 0.771804

3 0.0762358 0.462118 0.604523 0.946105

4 0.141656 0.303587 0.470881 0.942122

that determine four interpolatory curves. They are shown in Fig. 8 together with their

parametric speeds.
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t
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20
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40
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Fig. 8 Four quintic PH interpolatory curves (left) and corresponding parametric speeds
(right).
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