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In this paper, the geometric Lagrange interpolation of four points by planar cubic
Pythagorean-hodograph (PH) curves is studied. It is shown that such an interpolatory curve
exists provided that the data polygon, formed by the interpolation points, is convex, and
satisfies an additional restriction on its angles. The approximation order is 4. This gives
rise to a conjecture that a PH curve of degree n can, under some natural restrictions on
data points, interpolate up to n + 1 points.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Pythagorean-hodograph planar curves (PH curves) were introduced in Farouki and Sakkalis (1990). They form an impor-
tant class of planar parametric polynomial curves for which the arc-length can be computed exactly and their offsets are
rational curves. This makes them very useful in many practical applications, e.g. in CAD/CAM systems, robotics, animation,
NC machining, etc. The PH curves have attracted a lot of attention of researchers in the last two decades. Many results on
the Hermite type interpolation by PH curves have been obtained (see Farouki and Neff (1995), Albrecht and Farouki (1996),
Meek and Walton (1997), Jüttler (2001), Šír and Jüttler (2005), e.g.), but it seems that there are no results on the Lagrange
type interpolation. Hermite type interpolation methods are very useful in computer aided geometric design (CAGD) since
polynomial pieces can be easily smoothly joined. On the other hand, in practical applications it is often difficult to obtain
information about derivatives. If a PH curve has to be evaluated online, where all the data are not available in advance,
one has to be able to compute the values on the curve efficiently using only information on the position of already known
interpolated points. In this case a Lagrange type interpolation by PH curves similar to Aitken interpolation is needed. Of
course there is a serious drawback that usually one cannot put piecewise polynomial Lagrange interpolants together to form
a smooth spline curve.

Formally, a PH planar curve is defined as follows. Suppose that p : [a,b] → R
2, p(t) := (x(t), y(t))T , where x and y are

polynomials of degree � n, is a planar polynomial curve. Then p is said to have a Pythagorean hodograph if and only if

x′(t)2 + y′(t)2 = σ(t)2, ∀t ∈ [a,b],
for some polynomial σ . It is well known (Farouki and Sakkalis, 1990) that a PH curve of degree n has n + 3 degrees of
freedom, i.e., n − 1 less than a general planar parametric polynomial curve of the same degree. Thus it is expected that it
can interpolate at most �(n + 3)/2� points in the plane. But this is true only if the interpolation parameters are prescribed
in advance. If one considers so called geometric interpolation (see de Boor et al. (1987), Mørken and Scherer (1997), Jaklič
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et al. (2007), e.g.), where the interpolation parameters are supposed to be unknown, a larger number of points might be
interpolated by a PH curve of the same degree n.

Suppose that we want to interpolate k points T j ∈ R
2, j = 0,1, . . . ,k − 1, by a PH geometric interpolant p of degree n.

Since a linear reparameterization does not affect the degree of p and preserves the PH property, we can assume that
t0 := 0 < t1 < t2 < · · · < tk−2 < tk−1 := 1. A PH curve p has n + 3 degrees of freedom and k − 2 new ones are provided by
unknown interpolation parameters t j . On the other hand, 2k interpolation conditions p(t j) = T j , j = 0,1, . . . ,k − 1, have
to be fulfilled. Since only odd degree PH curves are particularly interesting (see Farouki (1994)) the following conjecture is
right at hand.

Conjecture 1. A planar PH curve of an odd degree n can interpolate up to n + 1 points.

A similar conjecture for general planar parametric curves has been stated in Höllig and Koch (1996), namely, that a
planar polynomial parametric curve of degree n can interpolate 2n data—much more than n + 1 as in the standard case. The
conjecture has not been confirmed for general degree n yet, since the problem turned out to be very hard. But it holds true
for curves of small degrees n � 5 (see Jaklič et al. (2007) and the references therein).

For the geometric Lagrange interpolation by PH curves it is expected that some reasonable conditions on the geometry
of data points have to be added (similarly as in the conjecture for general curves) and it is also quite clear that the
conjecture on PH curves might be even harder to prove than the one for general curves. Thus it is reasonable to study some
particular cases first. In this paper, we will consider the Lagrange interpolation by cubic PH curves, the case quite frequently
encountered in practical applications. We will show, that a planar cubic PH curve can interpolate 4 data points under some
natural restrictions.

The paper is organized as follows. In Section 2 a detailed explanation of the interpolation problem is given together with
the derivation of nonlinear equations that have to be studied. Section 3 provides the main results of the paper. Since the
proofs of the main theorems require several steps, they are given as a separate section. In the last section, some numerical
examples are outlined, which confirm the results of the paper.

2. Interpolation problem

Let us start with the notation first. Throughout the paper u · v denotes the standard scalar product, u × v is the standard
planar vector product, and ‖ · ‖ is the Euclidean norm. Further, let 
 (u, v) denote the angle between the vectors u and v ,
�(·)i := (·)i+1 − (·)i , and let

Q (ϕ) :=
(

cosϕ − sinϕ
sinϕ cosϕ

)

be the rotation matrix.
Let us introduce the setup. Suppose that an ordered set of points T j , j = 0,1,2,3, in the plane is given, where T j 
=

T j+1, j = 0,1,2. A cubic PH curve p, which interpolates the given data, needs to be found. Since the number of degrees of
freedom of a PH cubic is known to be 6 (Farouki and Sakkalis, 1990), the points T j in general cannot be interpolated by a
PH cubic at the prescribed values of interpolation parameters. Thus one has to interpolate them in a geometric sense. Let

t0 := 0 < t1 < t2 < t3 := 1 (1)

be a sequence of parameters, where t1 and t2 are unknown. The PH curve p has to satisfy the interpolation conditions

p(t j) = T j, j = 0,1,2,3. (2)

It turns out that it is convenient to consider the interpolant p in the Bézier form,

p(t) =
3∑

i=0

bi B3
i (t), (3)

where bi are the Bézier control points of the curve and

B3
i (t) =

(
3

i

)
ti(1 − t)3−i, i = 0,1,2,3,

are the Bernstein polynomials of degree 3. Due to the boundary control points interpolation property, b0 = T 0 and b3 = T 3.
In order to determine the interpolant, the unknown control points b1 and b2 as well as the parameters t1 and t2, have to
be found.

The interpolation conditions (2) for j = 1,2, imply the equations

b1 B3
1(t j) + b2 B3

2(t j) = T j − b0 B3
0(t j) − b3 B3

3(t j) =: c j, j = 1,2,

which can be written as a linear system for b1 and b2,

Bb = c, (4)
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Fig. 1. A cubic PH Lagrange interpolant together with its control polygon and the data polygon.

where

B =
(

B3
1(t1) B3

2(t1)

B3
1(t2) B3

2(t2)

)
, b =

(
bT

1

bT
2

)
, c =

(
cT

1

cT
2

)
.

Since

det B = 9t1t2(1 − t1)(1 − t2)(t2 − t1),

the linear system (4) has a unique solution for any set of parameters (1). A straightforward computation reveals that �bi :=
�bi(t1, t2), i = 0,1,2, can be written as

�b0 := t1 + t2 + t1t2

3t1t2
�T 0 − t1(t2

2 + (1 − t1)(1 + t2))

3(1 − t1)(t2 − t1)t2
�T 1 + t1t2

3(1 − t1)(1 − t2)
�T 2,

�b1 := −1 − t1t2

3t1t2
�T 0 + t2t2

1 + (t2
2 + t2 + 1)(1 − t1)

3(1 − t1)(t2 − t1)t2
�T 1 − t1(1 − t2) + t2

3(1 − t1)(1 − t2)
�T 2,

�b2 := (1 − t1)(1 − t2)

3t1t2
�T 0 − (1 − t2)((1 − t1)

2 + (2 − t1)t2)

3(1 − t1)(t2 − t1)t2
�T 1 + t1(t2 − 2) − 2t2 + 3

3(1 − t1)(1 − t2)
�T 2. (5)

But (2) are not the only equations which have to be considered. One has to assure that p is also a PH curve. There
are several equivalent characterizations of cubic PH curves, but usually the complex representation is the most suitable
one. Thus if control points bi are considered as complex numbers (using the standard representation of planar vectors as
complex numbers) then by Farouki (1994), a cubic parametric curve is a PH curve if and only if

(�b1)
2 − �b0�b2 = 0. (6)

This is a complex equation for two scalar unknowns t1 and t2. Note that (6) is equivalent to well-known conditions on
Bézier control polygon of a PH curve, namely ‖�b1‖ = √‖�b0‖‖�b2‖ and θ1 = θ2 (see Fig. 1). Note also that the use of
the complex-valued approach does not overcome the problem of solving a nonlinear system of equations for t1 and t2. This
makes the analysis of geometric Lagrange type interpolation methods much more difficult than the analysis of Hermite type
ones.

Eq. (6) is rational in t1 and t2. Taking its real and imaginary part leads to a system of two real rational equations

e(t1, t2) := e(t1, t2; T ) = (
ei(t1, t2; T )

)2
i=1 = 0, (7)

where

e1(t1, t2; T ) := �b2
1,x − �b2

1,y − �b0,x�b2,x + �b0,y�b2,y,

e2(t1, t2; T ) := 2�b1,x�b1,y − �b0,x�b2,y − �b0,y�b2,x,

and �bi := (�bi,x,�bi,y)
T . Note that T := (T j)

3
j=0 refers to the fact that the system depends on data points T j , j =

0,1,2,3. It is easy to see that the denominators in (7) vanish only for t1 = 0,1, t2 = 0,1, and t1 = t2, thus the system
can be transformed to an equivalent system of two polynomial equations, each of them of total degree 8. Applying the
straightforward approach using the Gröbner basis or resultants on the obtained polynomial system seems hopeless. Thus an
in-depth analysis is needed.

3. Cubic PH Lagrange interpolation

Some quick numerical experiments show that more than one solution of the interpolation problem might exist. This is a
common fact observed already in the Hermite case. Since some of the solutions are clearly not acceptable in CAGD (having
loops, e.g.), some kind of shape preserving will be required. The following definition gives a description of an appropriate
interpolating cubic PH curve.
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Definition 2. A cubic Bézier PH curve (3) which interpolates data points T j , j = 0,1,2,3, in a geometric sense is admissible
curve if

(�bi × �bi+1)(�T i × �T i+1) > 0, i = 0,1.

Accordingly, the solution of the nonlinear system (7) is an admissible solution if the unknowns lie in

D := {
(t1, t2) ∈ R

2 | 0 < t1 < t2 < 1
}
,

and the resulting curve is admissible.

Observe that the above definition excludes those configurations of data points for which �T i ×�T i+1 = 0, i = 0 or i = 1.
But in this case at least three of them must lie on a straight line. If all of them are collinear, the interpolating PH curve
must be a straight line. If three consecutive data points are collinear, then either the resulting cubic PH interpolant forms a
loop since cubic PH curves do not have inflection points (see Farouki and Sakkalis (1990), e.g.), or the data polygon has a
fold. Both cases should be excluded in practical applications. Thus it will be assumed that three consecutive data points are
not collinear.

Note further that the non-convex data points T j , j = 0,1,2,3,

(�T 0 × �T 1)(�T 1 × �T 2) < 0,

cannot be interpolated by an admissible cubic PH curve. As a consequence we shall concentrate only on those configurations
for which

(�T 0 × �T 1)(�T 1 × �T 2) > 0.

It can still happen that an admissible curve forms a loop, e.g., if the data polygon has a self intersection (see Fig. 4).
We are now ready to state the main results of the paper.

Theorem 3. Suppose that the data points T j , j = 0,1,2,3, satisfy

(�T 0 × �T 1)(�T 1 × �T 2) > 0 and γ1(T ) + γ2(T ) < 4π/3,

where

γ1(T ) := 
 (�T 0,�T 1), γ2(T ) := 
 (�T 1,�T 2).

Then an admissible cubic PH curve p, which satisfies (2), exists.

The following theorem extends the asymptotic approximation order obtained in Meek and Walton (1997) to the Lagrange
case. In comparison to (de Boor et al., 1987) it is lower by 2 as expected since two degrees of freedom are used by the PH
condition. However, the same order as in the function case is still achieved.

Theorem 4. Let the data points be sampled from a smooth convex curve

f : [−h,h] → R
2

with non-vanishing first derivative. One can find h0 > 0 such that for all h � h0 there exists an admissible cubic PH curve p which
satisfies (2). The approximation order is four.

Theorem 3 provides us with a sufficient condition on the existence of admissible cubic PH curves. If the angle restriction
is violated, the number of admissible solutions is even, in most cases zero. Consider the following example. Let the data
points be chosen as

T 0 = (0,0)T , T 1 =
(

−1,
1

4

)T

, T 2 =
(

−1

2
,−1

)T

,

T 3 = T 2 + 10Q (ξ0 + ξ)
�T 1

‖�T 1‖ , ξ0 := 4π

3
− γ1(T ), (8)

where ξ is a free parameter. Now, the assumptions of Theorem 3 hold for every −ξ0 < ξ < 0, and as one can check, the
interpolation problem has a unique admissible solution. But for ξ > 0 the angle restriction is violated. Two admissible
solutions exist for 0 < ξ < ξ̃ , ξ̃ := 0.02201889π , that turn into one at ξ = ξ̃ . But, for ξ > ξ̃ no (admissible) solutions were
found in D. Fig. 2 shows the admissible PH curves for ξ = −0.02π,0.02π,0.022π,0.022018π . In the first case there is a
unique interpolant, and there are two of them in other cases.

Since the proofs of Theorem 3 and Theorem 4 take several steps, they will be given as a separate section.
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Fig. 2. Admissible PH curves for data (8) with ξ = −0.02π and ξ = 0.02π (top left and right), ξ = 0.022π and ξ = 0.022018π (bottom left and right).

4. Proofs of theorems

Without loosing generality we may assume throughout the paper that T 0 is at the origin, and

�T i × �T i+1 > 0, i = 0,1.

If this is not the case, a simple transformation of data points leads to a desired configuration. To prove that an admissible
interpolating cubic PH curve exists is clearly equivalent to show that a nonlinear system of equations (7) has an admissible
solution. In order to prove this, consider the following particular problem first. Let the data points

U 0 =
(

0

0

)
, U 1 =

( 7
27

− 2
3

)
, U 2 =

( 20
27

− 2
3

)
, U 3 =

(
1

0

)

be given (see Fig. 1). Consider the system of nonlinear equations e(t1, t2; U ) = 0, given by (7), where U := (U j)
3
j=0. Since

coefficients are rational numbers now, one is able to compute the Gröbner basis of the corresponding equivalent polynomial
system (obtained from (7) by simply multiplying each equation by their common denominator) exactly. The first Gröbner
basis polynomial, obtained by the elimination of t2, has a precisely one solution in [0,1], i.e., t1 = 1

3 . Since a similar result

can be obtained for t2, the pair { 1
3 , 2

3 } is the only solution in D. It is easy to verify that in this case the control points of the
resulting interpolating Bézier curve satisfy the admissibility condition. Thus this is the only admissible solution (see Fig. 1).

The fact that a particular set of data points U admits an odd number (in this case precisely one) of admissible solutions
will now be carried over to the general case of data points T by a homotopy. Since a rotation of data does not affect the
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Fig. 3. Homotopy connecting general and particular data.

solution we can assume that the directions of �T 0 and �U 0 are the same. However, the angle restriction in Theorem 3
requires that a homotopy is chosen carefully. Namely, let H : D × [0,1] → R

2 be defined by

H(t1, t2, λ) := e
(
t1, t2; W (λ)

)
,

where data W (λ) := (W j(λ))3
j=0 are determined by angles 
 (W i−1(λ), W i(λ)) and norms ‖�W i(λ)‖. More precisely, with

γi(λ) := γi
(
W (λ)

) = (1 − λ)γi(T ) + λγi(U ), i = 1,2,

and

Li(λ) := (1 − λ)‖�T i‖ + λ‖�U i‖, i = 0,1,2,

the data W i(λ) reads

W 0(λ) := T 0,

W 1(λ) := T 0 + L0(λ)
�T 0

‖�T 0‖ ,

W 2(λ) := W 1(λ) + L1(λ)Q
(
γ1(λ)

) �T 0

‖�T 0‖ ,

W 3(λ) := W 2(λ) + L2(λ)Q
(
γ2(λ)

) �W 1(λ)

‖�W 1(λ)‖ .

This homotopy clearly transforms the general data T to the particular data U preserving the original upper bound 4π/3 on
the angles. Fig. 3 demonstrates how general data are connected to the particular data by the described homotopy for two
examples of data points.

The following lemma reveals that there are no admissible solutions near the boundary.

Lemma 5. Suppose that the assumptions of Theorem 3 hold. Then the system (7) cannot have an admissible solution close to the
boundary ∂D.

Proof. The boundary ∂D contains t1 = 0, t1 = t2, and t2 = 1, thus we have to consider a couple of particular cases.
There are six possible approaches to the boundary ∂D to be excluded as a solution of the system (7). From

∥∥e(ε, t2)
∥∥2 = (t2

2 − t2 + 1)2

81t4
2

‖�T 0‖4 1

ε4
+ O

(
1

ε3

)
,

∥∥e(t1,1 − ε)
∥∥2 = (t2

1 − t1 + 1)2

81(1 − t1)4
‖�T 2‖4 1

ε4
+ O

(
1

ε3

)
,

∥∥e(t1, t1 + ε)
∥∥2 = (t2

1 − t1 + 1)2

81(1 − t1)4t4
1

‖�T 1‖4 1

ε4
+ O

(
1

ε3

)
, (9)
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it follows that a single ti cannot approach the boundary since �T i should not vanish. However, (9) eliminates also the
possibility that both unknowns tend to the boundary, but not at the same rate. So, with some constant τ > 0, we only have
to consider expansions

∥∥e
(
ε, ε(1 + τ )

)∥∥2 = 1

81τ 4(τ + 1)4
‖ − τ�T 0 + �T 1‖4 1

ε8
+ O

(
1

ε7

)
,

∥∥e
(
1 − ε(1 + τ ),1 − ε

)∥∥2 = 1

81τ 4(τ + 1)4
‖�T 1 − τ�T 2‖4 1

ε8
+ O

(
1

ε7

)
.

Quite clearly, the leading terms cannot vanish since �T i and �T i+1 are not collinear. As to the last possibility, the system
(7) expands as

e(ε,1 − ετ ) = 1

9τ 2
ẽ(τ )

1

ε2
+ O

(
1

ε

)
.

The resultant R(ẽ, τ ) of polynomials ẽ simplifies to

R(ẽ, τ ) = (�T 0 × �T 2)
2(4(�T 0 · �T 2)

2 − ‖�T 0‖2‖�T 2‖2), (10)

and it remains to verify that this term cannot vanish. If �T 0 × �T 2 = 0, then �T 0 and �T 2 must be paral-
lel. Further, if the second factor in (10) is equal to 0, then cos2(
 (�T 0,�T 2)) = 1

4 . This gives the range of angles
γ1(T ) + γ2(T ) ∈ {0, 1

3 π, 2
3 π,π, 4

3 π, 5
3 π} that has to be considered. The assumptions of lemma shrink the set of angles

to γ1(T ) + γ2(T ) ∈ { 1
3 π, 2

3 π,π}. Suppose that ϕ is one of these angles, and let Q (ϕ) be the rotation matrix that brings
�T 0 to the direction of �T 2,

Q (ϕ)�T 0 = ω�T 2, ω := ‖�T 0‖
‖�T 2‖ > 0.

Then ∥∥e(ε,1 − ετ )
∥∥2 = 1

81τ 4
g(ϕ)‖�T 2‖4 1

ε4
+ O

(
1

ε3

)
, (11)

with

g(ϕ) := (
τ 4ω4 + τ 2ω2 + 2τω(τ 2ω2 cosϕ + τω cos 2ϕ + cosϕ) + 1

)
.

However, the expansion (11) cannot vanish at 1
3 π and π since

g

(
1

3
π

)
= (τω + 1)2(τ 2ω2 − τω + 1) > 0, g(π) = (τ 2ω2 − τω + 1)2 > 0.

Finally, if γ1(T ) + γ2(T ) = 2
3 π , the leading term in (11) may vanish, but the solution that crosses the boundary ∂D is not

the admissible one since the vector product

�b0 × �b1 = − ω

6
√

3τ
‖�T 2‖2 1

ε2
+ O

(
1

ε

)

is supposed to be positive. The proof, that there is no admissible solution close to the boundary ∂D, is complete. �
A very well known fact about homotopy invariants (see Berger (1977), e.g.) states that the Brouwer’s degree of H is

invariant as soon as the homotopy is nonzero at the boundary ∂D for any λ ∈ [0,1]. The map H is formally not defined
on ∂D, but since the data points W i(λ) by the construction of the homotopy for any λ ∈ [0,1] satisfy the assumptions of
Theorem 3, H is by Lemma 5 nonzero close to ∂D, thus it is nonzero on the boundary of some compact set E ⊂ D and the
same conclusion follows. Now, since the particular system of nonlinear equations e(t1, t2; U ) = 0 has a precisely one simple
solution, the Brouwer’s degree of H(t1, t2,1) is ±1. Thus the Brouwer’s degree of H(t1, t2,0) = e(t1, t2; T ) must be odd too.
Then the system e(t1, t2; T ) has at least one admissible solution and the proof of Theorem 3 is concluded.

It is important to note that the previous analysis reveals the possibility of an another solution of the problem, which is
not admissible by definition. This is not surprising, since we know that extraneous PH curves, which interpolate the same
data set, exist also in the Hermite type interpolation and various approaches are known to avoid them (see Farouki (1996),
e.g.).

Let us conclude this section by the proof of Theorem 4. Suppose that the curve f : [−h,h] → R
2 is smooth and convex

as required. Furthermore, suppose that its first derivative nowhere vanishes on [−h,h]. Without loss of generality we may
assume that it is parameterized by the first component, and f (0) = (0,0)T , f ′(0) = (1,0)T . Thus f expands at 0 as

f (s) =
(

s
c2

2
s2 + c3

6
s3 + c4

24
s4 + O(s5)

)
,
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where c2 > 0 since f is assumed to be convex. Further, let the data points be sampled as

T i = f
(
(2ηi − 1)h

)
, i = 0,1,2,3, (12)

where

0 = η0 < η1 < η2 < η3 = 1.

Let us introduce new unknowns zi by a guess

ti = ηi + (1 − ηi)ηi zih, i = 1,2.

Eqs. (7) expand as

4

3(η2 − η1)
h3(z1 − z2) + O(h4) = 0,

8c2

9(η2 − η1)

(
(3η1 + η2 − 2)z1 − (η1 + 3η2 − 2)z2

)
h4 − 8

9
h4c3 + O(h5) = 0.

This reveals the unknowns zi as

z1 = − c3

2c2
+ O(h), z2 = − c3

2c2
+ O(h),

which shows that the system (7) has an asymptotic solution

ti = ηi − c3

2c2
(1 − ηi)ηih + O(h2), i = 1,2.

Let us insert this solution and the data points (12) in (5). The expansions simplify to

�bi =
( 2

3
0

)
h + O(h2), i = 0,1,2,

and higher order terms give

�2bi =
⎛
⎜⎝− c3

3c2

2

3
c2

⎞
⎟⎠h2 + O(h3), i = 0,1, �3b0 =

⎛
⎜⎜⎝

c2
3

c2
2

−2

3
c3

⎞
⎟⎟⎠h3 + O(h4).

So the convex hull property implies that the interpolating Bézier curve satisfies p′ = (2h,0)T + O(h2), p(r) = O(hr), r = 2,3,
for all h small enough. But then p could be reparameterized by the first component t = (p)−1

1 (s) on s ∈ [−h,h], and the
derivatives of the reparameterized curve stay bounded for all h small enough as in de Boor et al. (1987). Since then f and
p agree at ηi, i = 1,2,3,4, the approximation order O(h4) follows.

5. Numerical examples

In this section some numerical examples will be given which confirm the obtained results. Take the data points

T 0 = (0,0)T , T 1 =
(

0,−1

3

)T

, T 2 =
(

ξ,− 1

20
ξ − 1

3

)T

, T 3 = (1,0)T , (13)

where ξ is a free parameter (Fig. 4). Consider the following six choices of the parameter ξ ,

ξ = −1

7
,−1

8
,

1

10
,

2

3
,1,

7

4
. (14)

The system of nonlinear equations (7) is solved by a continuation method (see Allgower and Kurt (1990)). For the second
case in (14), where γ1(T )+γ2(T ) > 4π/3, the system of nonlinear equations (7) has two admissible solutions (Fig. 4, upper
left). For ξ = 1/10, the system (7) has two solutions in D (Fig. 4, upper right), but one of them has an undesirable loop
(the solution is not admissible). In this case γ1(T ) + γ2(T ) < 2π/3. If we choose such a parameter ξ that γ1(T ) + γ2(T ) ∈
(2π/3,4π/3) (next two cases in (14)), the non-admissible solution disappears (Fig. 4, bottom). This is to be expected
according to the proof of Theorem 3. For the first and the last case in (14), γ1(T ) + γ2(T ) > 4π/3, but here no cubic PH
interpolant exists. This fact can also be confirmed by computing the Gröbner basis of the equivalent polynomial system
obtained from (7).
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Fig. 4. Different choices of the parameter ξ imply different number of cubic PH interpolants for the data (13) and (14).
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