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Abstract

In this correspondence we propose a novel method for
efficiently calculating the eigenvectors of uniformly rotated
images of a set of templates. As we show, the images can be
optimally approximated by a linear series of eigenvectors
which can be calculated without actually decomposing the
sample covariance matrix.
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I. Introduction

There are several applications in computer vision where
a template or a set of templates must be learned in a way
that enables recognition or matching in every possible ori-
entation of the target. It is clear that when using direct cor-
relation, a large set of templates must be stored and com-
pared with the target. Several researchers have therefore
used techniques that compute an optimal approximation of
a family of rotated templates [1], [2], [3].

Among the most popular approximation techniques in
computer vision is the so-called Principal Component Anal-
ysis (PCA), also known as the Karhunen–Loéve expansion,
that represents images with features — coefficient vectors
— which are the projections of images onto an orthogonal
set of eigenvectors.

Eigenvectors are usually calculated using the singular
value decomposition of the covariance matrix. Eigenvec-
tors are sorted according to their eigenvalues, which are re-
lated to the variance in the set of images that each eigen-
vector encompasses. By memorizing only a small number
of eigenvectors with the largest eigenvalues, we construct
an approximation of the learning set of images, which is
the optimal linear representation in the least squared error
sense.

This work was partly supported by the Ministry of Science andTechnol-
ogy of Republic of Slovenia (Project J2-0414).

In this correspondence we discuss the special properties
of the eigenspace of a set of rotated templates. Our work
was primarily triggered by a previous contribution of Ueno-
hara and Kanade [4], which explained the tight relationship
of the eigenspace of a single rotated template and the Dis-
crete Cosine Transform. In this contribution we further an-
alyze the problem of rotation and prove that for multiple
rotated templates there also exists an alternative and faster
method of calculation which, in contrast to the case of a sin-
gle template, is based on complex Discrete Fourier Trans-
form. The organization of the paper is as follows. First we
review the related work on the eigenvectors of special matri-
ces, such as those of a Toeplitz or circulant form. In section
III we summarize the method of calculating the eigenvec-
tors of a set of rotated versions of a single template. In
section IV we show how one can generalize this method for
a set of several rotating templates. Finally, in section VI we
give a brief overview of the paper.

II. Review of related work

In their correspondence in these Transactions, Uenohara
and Kanade [4] describe the relationship between the eigen-
vectors of a set of uniformly in-plane rotated images of an
object and the basis vectors of the DCT. They show that
the eigenvectors are completely defined by the fact that the
inner product matrix of the image vectors is a symmetric
Toeplitz matrix. As they claim, the eigenvectors of the in-
ner product matrix are invariant of the image content and
they can be generated much more efficiently by calculat-
ing the DCT transforms of the autocorrelation vector. This
greatly alleviates the computational expense of the training
phase. The authors also mention the relation of their results
to those obtained by Perona [2] and Freeman [5] on steer-
able filters. The main drawback of the method described in
[4] is that it can only be applied for templates of a single
rotating object.However some recognition problems re-
quire a representation which enables to interpolate the
spline of coefficients in order to represent images that



2were not included in the training set. Although this may
be not intuitive for sets of templates that are quite differ-
ent in their appearance, it gets more clear when we look
at specific problems, such as recognizing a panoramic
view from a training set of panoramic snapshots repre-
senting distinct locations in the environment [6], which
will be presented in Section V.

As we pointed out in [3], the eigenvectors of a training
set consisting of several rotated objects or scenes can not be
calculated directly with the use of DCT. However, the struc-
ture of the basis functions calculated by SVD resembled that
of a combination of harmonics basis. The properties of the
eigenvectors of Toeplitz matrices have been thoroughly de-
scribed before in Sjöström [7] or Gray [8]. In both works it
is showed that a circulant matrix (a special case of a Toeplitz
matrix) can be diagonalized by the Fourier coefficient ma-
trix, which is a property we will exploit in section IV.

III. Eigenspace representation of a set of ro-
tated versions of a single template

In this section we briefly summarize the procedure for
calculating the eigenspace of a set of rotated versions of a
single template, as described in [4] and introduce the nota-
tion which will be used throughout the paper.

Fig. 1. Template of a toy hammer rotated by 0,
(-30), (-60) and (-90) degrees, respectively.

figure

As a set of rotated versions of a template we understand
images captured from a single point of view, but under dif-
ferent in-plane rotations. The only constraint is that with
the in-plane rotation the information content is preserved.
Such is the case when rotating an image of an object on a

homogeneous background [4] (Fig. 1), or with panoramic
images rotated around the optical axis [3]. To obtain the
images of a template in all the possible rotations, we can ro-
tate the original image sequentially by2�=N . Examples of
the first six eigenvectors for the uniformly rotated template
of the toy hammer can be seen in Figure 2.In the digital
case, this rotation can be described more accurately, if we
warp the image to a polar representation as in Fig. 3. In this
case, we can rotate the image just by shifting the columns
accordingly.

Fig. 2. First 6 eigenvectors of the uniformly
rotated template of a toy hammer.

figure

We represent images from the training set as normalized
image vectors, from which the mean image is subtracted, in
an image matrixX 2 IRn�NX = � x0 x1 : : : xN�1 � ;
wheren is the number of pixels in the image andN is the
number of images.

The most straightforward way to solve the eigensystem is
to calculate the SVD of the covariance matrixC 2 IRn�n
of this normalized vector matrixC = XXT = � x0 x1 : : : xN�1 � 26664 xT0xT1

...xTN�1 37775 :
The eigenvectorsvi; i = 0; : : : ; N � 1, form an orthog-

onal basis. Sorted with respect to descending eigenvalues�i; i = 0; : : : ; N � 1, they represent the best linear ap-
proximation of the image data. Since the number of pixel
elementsn in an image is usually high, the computation of
the matrixC is a time consuming task of high storage de-
mands. However, it is possible to formulate the equations in
such a way that it becomes sufficient to calculate the eigen-
vectorsv0i; i = 0; : : : ; N � 1, of the inner product matrixQ 2 IRN�N ,
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Fig. 3. Warped template of a toy hammer ro-
tated 0, (-30), (-60) and (-90) degrees by shift-
ing the columns.

figure

Q = XTX = 2664 xT0xT1: : :xTN�1 3775 � x0 x1 : : : xN�1 � :
(1)

Since the eigenvectorsv0i are the solutions ofXTXv0i =�iv0i, we can calculate the eigenvectors ofXXT byXXTXv0i = �iXv0i [9]. In this way, we derive the eigen-
vectorsvi of the covariance matrix just by projecting thev0i
on the set of images,vi = 1p�iXv0i :

Uenohara and Kanade [4] showed that in the case of an
image set consisting of rotated examples of one original
image,Q is acirculant symmetric Toeplitz matrix andits
eigenvectorsv0i are therefore not dependent on the con-
tents of the images[4]1. Q is of the formQ = 266664 q0 q1 : : : qN�2 qN�1qN�1 q0 q1 : : : qN�2qN�2 qN�1 q0 q1 : : :: : : : : : : : : : : : : : :q1 : : : qN�2 qN�1 q0 377775 :

It can be derived from theshift theorem[10], that the
eigenvectors of a general circulant matrix are theN basis1Note that in the case of rotating a digital image, this is justan ap-
proximation, unless we use the polar representation of images, as in
Fig.3

vectors from the Fourier matrixF = [v00;v01; : : : ;v0N�1℄,
wherev0i = h1; !i; !2i; : : : ; !(N�1)iiT ; i = 0; : : : ; N � 1;
and! = e�2�j=N ; j = p�1 . The eigenvalues can be
calculated simply by retrieving the magnitude of the DFT
of one row ofQ, �i = N�1Xk=0 qk !i k :

This interesting property also emphasizes the central
point of the Fourier analysis, as it indicates that the Fourier
basis diagonalizes every periodic constant coefficient op-
erator, in our case the circular shift operator [11]. In
other words, all basis functions of the Fourier transform are
eigenvectors of the circular shift operator [10].

Sinceqi = qN�i, our matrix is circulant symmetric, and
therefore we can choose an appropriate set of real–valued
orthogonal eigenvectors. As it turns out, the proper basis
are the cosine functions from the real and the sine functions
from the imaginary part of the Fourier matrix [11].

We can therefore compute the eigensystem ofQ just by
first computing the autocorrelation vector[q0; q1; q2; : : : ; qN�1℄,
and then by calculating the�i values, which should be after-
wards sorted by decreasing magnitude. The eigenvectorsv0i
corresponding tok largest eigenvalues can then easily be se-
lected from the corresponding basis vectors of the Discrete
Cosine Transform (DCT) [4]:v0im = 
os��(2m+ 1) i2N � ; m = 0; : : : ; N � 1i = 0; : : : ; k � 1
Thus, with the help of the DCT, it is possible to compute the
basis vectors much more efficiently.

IV. Generalized method for a set of several ro-
tated templates

When dealing with multiple templates, the calculation
described in the previous section can not be applied. In this
case, we deal withP different templates (images), each of
them being rotatedN times (Fig. 4). In this case, we cannot
directly apply the previous approach to the calculation of
eigenvectors of circulant matrices, since the inner product
matrixA,A = XTX = 2664 Q00 Q01 : : : Q0;P�1Q10 Q11 : : : Q1;P�1: : : : : : : : : : : :QP�1;0 QP�1;1 : : : QP�1;P�1 3775 ;
is composed of several circulant blocksQjk, which are, in
general, not symmetric. However, as we will show, it is still



4

Fig. 4. Templates of five objects and exam-
ples of their warped images in three different
orientations.

figure

possible to calculate the eigenvectors without performing
the SVD decomposition ofX .

We have to find a solution of the eigenvalue problemAw0 = �w0; (2)

where(�;w0) is the eigenpair ofA. The fact that the matrix
blocksQjk of A are circulant matrices is crucial. As it was
already mentioned, every circulant matrix can be diagonal-
ized in the same basis by Fourier matrixF . Consequently
all the submatricesQjk have the same set of eigenvectorsv0i, i = 0; : : : ; N � 1. Following [12] we shall find the
eigenvectorsw0 of A among the vectors of the formw0i = ��i0v0Ti ; �i1v0Ti ; : : : ; �i;P�1v0Ti �T ; (3)

wherei = 0; : : : ; N � 1. Equation (2) can be rewritten
blockwise asP�1Xk=0 Qjk(�ikv0i) = ��ijv0i; j = 0; : : : ; P � 1 :
Sincev0i is an eigenvector of everyQjk, the equations sim-
plify toP�1Xk=0 �ik�ijkv0i = ��ijv0i; j = 0; : : : ; P � 1;
where�ijk is an eigenvalue ofQjk corresponding tov0i.
This implies a new eigenvalue problem�i�i = ��i ; (4)

where�i = 2664 �i00 �i01 : : : �i0;P�1�i10 �i11 : : : �i1;P�1: : : : : : : : : : : :�iP�1;0 �iP�1;1 : : : �iP�1;P�1 3775
and �i = [�i0; �i1; : : : ; �i;P�1℄T :
SinceQjk = QTkj , it can be proved that�i is Hermi-
tian and we haveP linearly independent eigenvectors�i,
which provideP linearly independent eigenvectorsw0i in
(3). Since the same procedure can be performed for everyv0i, we can obtainN � P linearly independent eigenvectors
of A.

It is therefore possible to solve the eigenproblem usingN
decompositions of orderP . SinceP represents the num-
ber of unique templates and is thereforeusually small in
comparison to the total number of imagesP �N , this method
offers a similar improvement as the method in [4].Assum-
ing that the time complexity of decomposing an � n
matrix is O(n3), our method accomplishes the task inN � O(P 3) time instead ofO((N � P )3).

However, by looking at the properties of the circulant ma-
trices one can deduce, that this method works only if we use
the complex Fourier basis as the eigenvector set for the cir-
culant matrix. In fact, this set of basis vectors is the only
common eigenspace for all the submatricesQij from A.
Further, as it was shown in Sanchez et al. [13], all the ma-
trices that have the DCT as their eigenvectors are generally
full matrices of the form of a Toeplitz matrix combined with
a near–Hankel matrix scaled by some constant factors [11].
Since our matrixA does not belong to this class, we cannot
use any of the known DCT basis functions to diagonalize
it in a real basis effectively as in the case of a single tem-
plate [4]. Therefore, using a complex basis in the calcula-
tion of the final representation results in a complex set of
eigenvectorsw0i.

Since both the covariance matrixC and the inner
product matrix A are symmetric matrices, they obvi-
ously have real eigenvalues and eigenvectors. We can
find them by using the following observations. The sym-
metric structure of the real matrix A implies that the
eigenvectors come in conjugated pairs with the same
eigenvalue. Therefore, the real and imaginary parts of
complex eigenvectors are also real eigenvectors ofA. By
considering the multiplicity of the eigenvalues, we con-
struct the real set of eigenvectors as follows: in the case
of a simple eigenvalue, the corresponding eigenvector is
already real, or can be obtained by normalizing the com-
plex one by its nonzero component. In the case of double
eigenvalues, the real set of eigenvectors can be generated
by selecting just one of the conjugated pair of the com-
plex eigenvectors with the same eigenvalue and taking
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Fig. 5. First forty components of the eigenba-
sis. Pairs of vectors that differ only in phase
form a complex eigenvector.

figure

its real and imaginary parts as a new pair of real eigen-
vectors with the same eigenvalue. In a general case, the
real eigenvectors can be obtained by the orthogonaliza-
tion of the set of real and imaginary components of the
complex eigenvectors. However, in practice, when deal-
ing with images, it is not likely that such a case would
occur. So, the proposed method turns out to be very ef-
ficient in practical applications. An example of the basis
set of eigenvectors can be seen in Figure 5.

However, one can use also the complex basis; in this case
we reduce every conjugated pair to a single complex eigen-
vector. Since pairs of trigonometric functions are more in-
tuitively described in the complex space, calculations with
such a basis are even easier than with the real one.

V. A practical demonstration – appearance–
based representation of environment using
an eigenspace of panoramic images

Our algorithm opens up many possibilities of use in prac-
tical applications. As we show here, there exist specific
recognition problems that require multiple rotated templates
to be encompassed in a single eigenspace which makes pos-
sible to interpolate the model in order to represent images
that were not explicitly included in the training set. Al-
though this may be not intuitive for sets of templates that
are quite different in their appearance, it gets clearer when
we look at specific situations. One of the possible ap-
plications where our algorithm shows its potential is the
task of appearance–based localization, where the appear-
ance of the environment is represented by a training set of
panoramic snapshots representing distinct locations in the
environment [6]. Examples of four panoramic views can be
seen in Fig.7.

It is easy to demonstrate that if the panoramic sensor has
a fixed orientation, two images taken at nearby positions
tend to be strongly correlated. Since correlation is related
to the distance of image projections in the eigenspace, it
is obvious that by interpolating that representation one can
get a much coarser (although approximate) representation
of the appearance of the environment. By virtually rotating
all of the panoramic images in order to represent multiple in
plane rotations of the robot, the problem to solve is identical
to that of multiple rotated templates. One could argue that
each location could be represented by its own eigenspace,
however an interpolated representation is possible only if
all of the positions are represented in an unique eigenspace.
We demonstrate this by showing six images (Fig 6), where
the first and the last one are from the training set and were
taken 50 cm apart, while the other four are reconstructions
derived from an interpolated representation at in–between
points, representing locations spaced 10 cm apart.

To further clarify the topic, we performed a set of ex-
periments that show the advantage of our method in the
case of appearance–based mobile robot localization. As a
testing platform, we used a mobile robot equipped with a
panoramic camera. The idea was to perform an exploration
phase and construct a model of an indoor environment by
acquiring panoramic images at 62 measured positions. In
our experiment, we chose these positions to be on a 60�60
cm squared grid, and are denoted as squares in Fig 7. The
first 56 eigenvectors calculated from these images and their
rotated versions can be seen on Fig. 8.

To build a denser representation we interpolated the co-
efficients of training images on a 5�5 cm grid. The in-
terpolated coefficients for rotated versions of images were
also generated. In that way, intermediate positions are also
represented in the model although images taken at this po-
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Fig. 8. First 56 eigenvectors constructed from a set of 62 pan oramic images, each rotated (shifted)
50 times.

figure

Fig. 6. Six panoramic images, where the inter-
mediate four are virtual images, interpolated
from the first and the last image taken from
the training set.

figure

sitions were not included in the training set.

VI. Conclusions

We have shown how to compute the K-L expansion of a
number of uniformly rotated images arriving from different
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objects or scenes. Using our method one can construct an
optimal linear basis without performing the Singular Value
Decomposition on the whole set of images or their covari-



7ance matrix. Instead, by choosing a complex Fourier basis
set as eigenvectors for circulant submatrices, we show that
the system can be solved by operating on a set of smaller
eigenproblems of orderP , whereP is the number of tem-
plates we want to represent. SinceP is usually small in
comparison with the total number of images (P � N ), this
method offers a similar improvement as the method in [4]
in the case of a single image.

Furthermore, the method provides an insight in the calcu-
lation of the Karhunen-Loéve expansion for sets of rotated
templates; by following the procedure, it can be proven that,
also for the set of several rotated templates, the final eigen-
vectors are composed by locally varying harmonic func-
tions. Once known, these properties can easily be exploited
in order to ease the recognition or enable scale invariance.

We demonstrated the practical application of our method
by constructing an appearance–based model of environ-
ment, which can be used for the task of mobile robot lo-
calization. Since there is a need for explicit interpolation
of the representation in order to represent in–between po-
sitions, the task to solve is identical to that having a set of
multiple rotated templates which have to be represented in
an unique eigenspace.
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