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Abstract

In this paper, a classical problem of the construction of a cubic G1 continuous
interpolatory spline curve is considered. The only data prescribed are interpolation
points, while tangent directions are unknown. They are constructed automatically
in such a way that a particular minimization of the strain energy of the spline curve
is applied. The resulting spline curve is constructed locally and is regular, cusp-,
loop- and fold-free. Numerical examples demonstrate that it is satisfactory as far as
the shape of the curve is concerned.
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1 Introduction

The construction of planar parametric polynomial curves (or splines) based
on the interpolation of data points is one of the fundamental problems in
computer aided geometric design (CAGD). In the spline case, it is usually
required that the resulting parametric curve is at least G1 continuous, i.e.,
geometrically continuous of order 1. One of the basic problems in CAGD is
how to choose parameters of interpolation (break points). If they are given
in advance, interpolation schemes become linear (see [4], [6] and [15], e.g.).
On the other hand, they might be left as unknowns, which leads to so called
geometric interpolation (see [5], [18], [9], [16], [14], [11], [13], [10], e.g.). Neither
approach gives satisfactory results in various cases encountered in practical ap-
plications. While geometric interpolation is usually superior when asymptotic

∗ Corresponding author.

Email address: emil.zagar@fmf.uni-lj.si (Emil Žagar).
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analysis is concerned, linear schemes can give better results when interpola-
tion of separated data is needed. In the later case, some other criteria become
important, such as the shape of the curve, its strain energy, curvature, con-
vexity,. . . This leads to so called shape preserving techniques, nowadays a very
well understood topic (see [8], [17], [12], [1], [3], [2], e.g.).

In general, there are two classes of interpolation problems, Lagrange and Her-
mite. While the first one requires only data points, the second one needs also
some information on derivatives. Although Lagrange interpolation problems
seem easier to solve, Hermite ones are much more simple to handle. But they
have a serious drawback, derivatives are rarely available in practice. This usu-
ally requires a generation of artificial data.

When dealing with splines, two kinds of smoothness conditions at the break-
points are encountered, parametric and geometric continuity. While the first
one requires continuity of derivatives up to some order, the second one re-
laxes these conditions to continuity of geometric quantities, such as tangent
directions, curvatures,. . . , only. When G1 (or C1) smoothness is required, the
choice of tangent directions at data points becomes vital, since it significantly
influences the shape of the spline. Usually there are three possibilities:

• Tangent directions are given in advance.
• The choice of appropriate directions is left to the designer.
• An interpolating spline is required to be G1 continuous, but the tangent

directions are not specified.

While the first two approaches lead to local interpolating schemes, the last one
implies a global set of conditions given as a large (fortunately banded) system
of linear equations. Note that the second approach should be applied just for
local changes of the spline, otherwise quickly geometrically non-feasible curves
can be obtained, that are not pleasing to the human eye.

Since tangent directions are rarely available in practice, they should be de-
termined by some simple procedure, preferably by an easy and geometrically
evident construction.

In this paper a new method for the construction of a cubic G1 continuous
interpolatory spline curve is proposed, where the only data prescribed are
interpolation points, while tangent directions are unknown. They are con-
structed automatically in such a way that a particular minimization of the
strain energy of the spline curve is done. The resulting spline curve is con-
structed locally and is regular, cusp-, loop- and fold-free. Furthermore, it is
satisfactory as far as the shape of the curve is concerned.

The paper is organized as follows. In the next section the problem considered is
outlined. In Section 3 the minimization approach is described. Necessary and
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sufficient conditions for the existence of the optimal spline curve are given and
the regularity of the spline is proved. In Section 4, a detailed construction of the
spline curve, based on the results from Section 3, is presented. Furthermore,
an optimization process for the choice of the tangent directions is proposed.
An efficient algorithm for the construction of a cubic Hermite G1 spline is
outlined. The last section gives a number of numerical examples that illustrate
the results of the paper.

2 Interpolation problem

We will start with the description of some basic notation needed. For a =
(a1, a2)

T , b = (b1, b2)
T ∈ R

2, let a · b := a1 b1 + a2 b2 be the standard inner
product in R

2 and ∠(a, b) the angle formed by vectors a and b. Note that all
considered angles will be unsigned, and the term angle will be used also for
the magnitude of an angle. Recall that

a · b = ‖a‖ ‖b‖ cos ∠(a, b), |a × b| = ‖a‖ ‖b‖ | sin ∠(a, b)|,

where a × b := a1b2−a2b1 is the planar vector product and ‖·‖ is the Euclidean
norm in R

2. We will use the standard difference notation, i.e., ∆(•)i = (•)i+1−
(•)i and the standard divided differences, defined by

[xi, xi, . . . , xi
︸ ︷︷ ︸

k

]f :=
1

(k − 1)!
f (k−1)(xi),

[xi, xi+1, . . . , xj]f :=
[xi+1, . . . , xj]f − [xi, . . . , xj−1]f

xj − xi

, xi 6= xj.

The problem considered is as follows. Suppose that data points

T j ∈ R
2, j = 0, 1, . . . , n,

with T j 6= T j+1 and associated interpolation parameters

tj ∈ R, j = 0, 1, . . . , n, t0 < t1 < · · · < tn,

are given. We will assume that the interpolation parameters are prescribed
(usually they are derived from data points, e.g., by the centripetal, chord
length or α-parameterization, see [7]). Our goal is to find a G1 continuous
parametric spline curve s : [t0, tn] → R

2 such that

si := s|[ti−1,ti] ∈ P3, i = 1, 2, . . . , n,

si(tk) = T k, k = i − 1, i, i = 1, 2, . . . , n, (1)

ṡi(tk) = αi,k−i+1 dk, k = i − 1, i, i = 1, 2, . . . , n,
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where αi,k−i+1 > 0 are unknown scalars, dk are normalized tangent direction
vectors, and P3 is the space of planar parametric polynomials of degree ≤ 3.
Of course, there are infinitely many solutions for the above problem, since it
is well known that any set of αi,k−i+1 > 0 and dk gives a unique spline curve
s. Thus we have a large set of free parameters which can be used as shape
parameters of the spline.

One of the approaches for choosing the parameters α := (αi,k−i+1)
n,i

i=1,k=i−1 ∈
R

2n is to define a suitable functional and minimize it. Usually, the shape of
the curve depends mostly on its curvature κ and therefore it seems reasonable
to minimize the functional

ϕs(α) :=
∫ tn

t0

‖κ(t)‖2 dt =
∫ tn

t0

‖ṡ(t) × s̈(t)‖2

‖ṡ(t)‖6
dt. (2)

The expression (2) is called the strain energy of the curve. In practice ([4],
[19]), the approximate strain energy (called also linearized bending energy)

ϕ(α) :=
∫ tn

t0

‖s̈(t)‖2 dt, (3)

is used instead of (2). Note that the approximate strain energy is close to a
real one if ‖ṡ(t)‖ ≈ 1. If this is not the case, it can be far away from the
real strain energy. But the beauty of the approximant lies in the fact that the
minimization problem for the coefficients becomes linear. Note that s̈ might
not be continuous, but it has only a finite number of finite jumps, thus the
integral (3) clearly exists. It is obvious that the minimization can be done
locally. Namely,

min
α

ϕ(α) =
n∑

i=1

min
αi

ϕi(αi),

where

ϕi(αi) :=
∫ ti

ti−1

‖s̈i(t)‖2 dt, (4)

and αi := (αi,0, αi,1). It is clear from the geometry that the components of
αi should be positive, since otherwise the tangent vectors of si at ti−1 and ti
would not have the same directions as given tangent directions di−1 and di.
So one should have in mind that actually a constrained minimization of (4)
has to be done, i.e.,

min
αi∈Di

ϕi(αi), Di := {αi ∈ R
2 |αi > 0}.

Note that the inequality αi > 0 is considered componentwise. Unfortunately,
as already observed in [20], for given tangent directions di−1, di, the global
minimum is not always in Di, since the following theorem holds true.

Theorem 1 ([20]) Let si be the local Hermite interpolant on [ti−1, ti] satis-
fying (1) and let βk = ∠(∆T i−1,dk), k = i − 1, i (see Fig. 1) and βi−1,i :=

4



∠(di−1,di). Then the global minimum αi of ϕi is given by

αi,0 =
6 ∆T i−1 · di−1 − 3 (∆T i−1 · di) (di−1 · di)

∆ti−1

(

4 − (di−1 · di)
2
) ,

αi,1 =
6 ∆T i−1 · di − 3 (∆T i−1 · di−1) (di−1 · di)

∆ti−1

(

4 − (di−1 · di)
2
) .

Furthermore, αi > 0 if and only if

2 cos βi−1 − cos βi cos βi−1,i > 0 and 2 cos βi − cos βi−1 cos βi−1,i > 0.

The resulting Hermite interpolant si is regular on [ti−1, ti] if additionally

cos βi−1 >
1

3
and cos βi >

1

3
. (5)

Fig. 1. Single segment and critical betas.

Fig. 2. Two segments.

It is clear from Theorem 1 that tangent directions di−1 and di should satisfy
some geometric constraints to assure that the minimum of ϕi is in the desirable
domain Di and the resulting Hermite interpolant is regular. For the regular-
ity, e.g., admissible positions of tangent directions are shown in Fig. 1. This
becomes very important when local Hermite interpolants are put together to
form a spline curve. Consider namely two segments (see Fig. 2). If the angle
∠(∆T i−1, ∆T i) > βi−1 + βi, then no tangent direction di will guarantee the
regularity of either si or si+1. Since from (5) critical values for βi−1 and βi

are ≈ 70.53◦, the angle ∠(∆T i−1, ∆T i) should be less than 141.06◦. In [20]
this problem was solved by a preprocessing of data. The authors suggested
inserting additional two or three segments to achieve a desirable bound on
the above angle. Although the methods proposed in [20] are relatively simple,
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they require an amount of additional work which becomes a bottleneck in ap-
plications dealing with huge amounts of data. Furthermore, the assumption
that tangent directions are given in advance is usually not realistic at all.

In this paper we consider another approach that overcomes the mentioned
problems. Instead of inserting additional segments and calculating new inter-
polation points and tangent directions if the minimum of ϕi is not guaranteed
to be in an admissible domain Di, we assume that tangent directions are
unknown. Of course, restrictions on tangent directions given by Theorem 1,
might imply that no tangent direction at a given interpolation point would
be admissible. So it is clear that if we persist in a fixed number of spline seg-
ments, the functional ϕi might not have a minimum in an admissible region
Di for some tangent directions di−1 and di. Thus a reasonable approximation
of ϕi, leading to more relaxed conditions on admissible regions for tangent
directions, will be proposed.

The developed method will not require prescribed tangent directions and no
additional (artificial) data will be needed. An algorithm for constructing opti-
mal tangent directions, such that the approximating strain energy functional
is minimized, will be provided.

3 Minimization technique

The main goal of this section is to provide such an approximation for the
functional (4), that the magnitudes of admissible angles βi−1 and βi for tangent
directions di−1 and di are as large as possible. Intuitively, a tangent direction
at a given interpolation point T i−1 should always point into the same halfplane
as the vector ∆T i−1. Thus the maximal expected interval for the magnitudes
of (unsigned angles) βi−1 and βi to lie in is [0, π/2). If additionally the resulting
Hermite interpolant is regular, a pleasant shape of the spline is expected. One
of the natural ways to approximate (4) is to use a particular quadrature. To
keep things as simple as possible, the trapezoidal rule will be chosen here.
Thus

ϕi(α) =
∫ ti

ti−1

‖s̈i(t)‖2 dt ≈ ∆ti−1

2

(

‖s̈i(ti−1)‖2 + ‖s̈i(ti)‖2
)

. (6)

However ‖s̈i(ti−1)‖ and ‖s̈i(ti)‖ both depend on tangent directions di−1 and
di, thus similar conditions on admissible regions for tangent directions as
stated in Theorem 1 are expected. In order to avoid this, a further approxi-
mation of (6) will be done. The main idea is to find the best approximation
of s̈i(ti−1), given as a linear combination of si(ti−1), ṡi(ti−1), and si(ti), and
similarly, the best approximation of s̈i(ti) by si(ti−1), ṡi(ti) and si(ti). The
best approximation should be considered here as an approximation which is
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exact on the polynomial space of order ≤ k, where k is as large as possible. The
method of undetermined coefficients or the Newton’s form of the interpolation
polynomial lead to

s̈i(ti−1) ≈ 2 [ti−1, ti−1, ti]si, s̈i(ti) ≈ 2 [ti−1, ti, ti]si,

and by (6), ϕi can be approximated by

ϕi(α) ≈ 2

∆ti−1

ψi(α), (7)

where

ψi(α) :=

∥
∥
∥
∥
∥

1

∆ti−1

∆T i−1 − αi,0 di−1

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
αi,1 di −

1

∆ti−1

∆T i−1

∥
∥
∥
∥
∥

2

. (8)

Theorem 2 The nonlinear functional ψi, i = 1, 2, . . . , n, has a unique global
minimum in the interior of Di iff

α∗

i :=
1

∆ti−1

(di−1 · ∆T i−1,di · ∆T i−1)
T > 0.

Furthermore,

min
αi∈Di

ψi(αi) =
2 − c2

i,0 − c2
i,1

(∆ti−1)2
‖∆T i−1‖2,

where
ci,k = cos ∠ (di+k−1, ∆T i−1) , k = 0, 1.

PROOF. The functional (8) can be simplified to

ψi(αi) =
1

(∆ti−1)2

(

(∆ti−1)
2

(

α2
i,0 + α2

i,1

)

− 2 ∆ti−1(αi,0 di−1 + αi,1 di) · ∆T i−1 + 2 ‖∆T i−1‖2
)

.

Note that ψi is convex. Its gradient vanishes at α∗
i :=

(

α∗
i,0, α

∗
i,1

)T
, where

α∗

i,k =
di+k−1 · ∆T i−1

∆ti−1

, k = 0, 1,

which leads to a unique minimum

ψi(α
∗

i ) =
2 − c2

i,0 − c2
i,1

(∆ti−1)2
‖∆T i−1‖2.

The point α∗
i is in Di iff its components are positive. This concludes the proof

of the theorem.
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Notice that the minimal value of the functional ψi can also be zero. In this
case ci,0 = ci,1 = 1 (or −1, but in this case the curve has an undesired fold),
and the cubic parametric spline segment si reduces to a straight line si(t) =
T i−1 + (t − ti−1)[ti−1, ti]si.

Corollary 3 The conditions α∗
i > 0, i = 1, 2, . . . , n, have a simple geometric

interpretation, i.e., ∠ (di+k−1, ∆T i−1) ∈ [0, π
2
), k = 0, 1.

Now suppose that the assumptions of Theorem 2 are satisfied. Then an impor-
tant question arises whether the resulting cubic spline segment si is regular
on [ti−1, ti], i = 1, 2, . . . , n. The answer is affirmative, even more, si has no
cusps, loops or folds.

Theorem 4 Let the assumptions of Theorem 2 be satisfied and let si, i =
1, 2, . . . , n, be the resulting Hermite geometric interpolant defined by (1). Then
the spline segment si is regular, loop-, cusp-, and fold-free.

PROOF. Let us reparameterize si by a local parameter u = (t− ti−1)/∆ti−1,
i.e., let pi(u) := si(t), t ∈ [ti−1, ti]. It is enough to show that pi is regular,
loop-, cusp-, and fold-free on [0, 1]. By (1) and Theorem 2

pi(k) = T i+k−1, k = 0, 1,

p′

i(k) = ∆ti−1 αi,k di+k−1 = (di+k−1 · ∆T i−1) di+k−1, k = 0, 1.

Clearly, pi can be written in the Bézier form as

pi(u) = T i−1 B3
0(u) +

(

T i−1 +
1

3
(di−1 · ∆T i−1) di−1

)

B3
1(u)

+
(

T i −
1

3
(di · ∆T i−1) di

)

B3
2(u) + T i B

3
3(u),

where B3
i , i = 0, 1, 2, 3, are cubic Bernstein polynomials. By using a translation

and a rotation we can further assume that T i−1 = (0, 0)T and T i = (x1, 0)T ,
x1 > 0. Since by Theorem 2, α∗

i > 0, the conclusion that di+k−1,1 > 0,
k = 0, 1, where di+k−1,1 is the first component of di+k−1, follows immediately.
A differentiation of pi yields

p′

i(u) = (di−1 · ∆T i−1) di−1 B2
0(u) + (3 ∆T i−1 − (di−1 · ∆T i−1) di−1

−(di · ∆T i−1) di) B2
1(u) + (di · ∆T i−1)di B

2
2(u).

Let p′i,1 be the first component of p′
i. To see that pi is regular and loop-, cusp-

and fold-free on [0, 1], it is enough to verify that p′i,1(u) > 0 for u ∈ [0, 1] (see
[6], e.g.). Quite clearly

p′i,1(u) = x1

(

d2
i−1,1 B2

0(u) +
(

3 − d2
i−1,1 − d2

i,1

)

B2
1(u) + d2

i,1 B2
2(u)

)

.
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Since di are normalized and di+k−1,1 > 0, the conclusion 0 < di+k−1,1 < 1,
k = 0, 1, follows. Since also x1 > 0, all the Bézier coefficients of p′i,1 are
positive and by the convex hull property of Bézier curves, p′i,1 is positive on
[0, 1]. This concludes the proof of the theorem.

4 Construction of tangent directions

In the previous section, a construction of the cubic Hermite G1 polynomial
spline curve, based on a minimization of energy, has been derived. We have
assumed that the unit tangent directions di are known in advance and the
parameters α∗

i are obtained by a particular minimization technique. As it is
clear from Theorem 2, tangent directions must be chosen carefully.

In this section the problem of the construction of tangent directions di will be
addressed. From Theorem 2 it is enough to require

di+k−1 · ∆T i−1 > 0, i = 1, 2, . . . , n, k = 0, 1.

In order to fulfill these conditions, consider the i-th and (i + 1)-th segment of
the spline curve s (see Fig. 3). Let us define a rotation

R :=






0 −1

1 0




 (9)

and zi := sign (∆T i−1 × ∆T i). Further, let

ui := zi R ∆T i−1, vi := −zi R ∆T i, wi := λi ui + (1 − λi) vi, λi ∈ R.
(10)

It is now easy to prove the following lemma.

Lemma 5 If zi 6= 0 and λi ∈ (0, 1), then wi · ∆T j > 0, j = i − 1, i.

PROOF. We will prove that wi · ∆T j > 0, j = i − 1. The proof for j = i
is very similar and will be omitted. Take any wi = λi ui + (1 − λi) vi with
λi ∈ (0, 1). By (9) and (10)

wi · ∆T i−1 = λi ui · ∆T i−1 + (1 − λi) vi · ∆T i−1

= −(1 − λi) zi (R ∆T i) · ∆T i−1,

since ui and ∆T i−1 are perpendicular to each other. Obviously, it is enough
to show that

zi = −sign ((R ∆T i) · ∆T i−1) .
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Since zi 6= 0, ∠ (∆T i−1, ∆T i) 6= 0, π, and there are two possibilities.

(a) If zi > 0, then ∠ (R∆T i, ∆T i−1) > π/2 and sign ((R∆T i) · ∆T i−1) < 0.
(b) If zi < 0, then ∠ (R∆T i, ∆T i−1) < π/2 and sign ((R∆T i) · ∆T i−1) > 0.

This concludes the proof of the lemma.

From Lemma 5 it follows that any λi ∈ (0, 1) gives wi that leads to the mini-
mization of the functional (8). Namely, one just takes di = wi/‖wi‖. Thus λi,
i = 1, 2, . . . , n, can be considered as free shape parameters. One of the choices
would, e.g., be λi = ‖∆T i‖/(‖∆T i−1‖+‖∆T i‖), which implies that di points
from T i in the direction of the bisector of the angle ∠(∆T i−1, ∆T i) (see Fig. 3
and Corollary 7). This is a natural heuristic choice since this di stays away

Fig. 3. Admissible positions of di.

from the unwanted directions implying αi,k = 0, for k = 0 or k = 1, as much as
possible. Lemma 5 excludes two possibilities, namely ∠ (∆T i−1, ∆T i) = 0, π.
But, if the considered angle is equal to 0, then wi can be taken as wi = ∆T i,
and again the conclusions of the lemma follow. On the other hand, the case
when the angle equals π would imply that any parameterization of such data
has a fold. Thus, this case should be excluded from possible data sets by using
some kind of preprocessing of data points (by inserting an additional point,
e.g.).

For the first and the last tangent direction the above procedure can not be ap-
plied, but in this case d0 and dn can be, e.g., chosen as d0 = ∆T 0/‖∆T 0‖ and
dn = ∆T n−1/‖∆T n−1‖. Thus for given shape parameters λi ∈ (0, 1), the tan-
gent directions and the resulting Hermite G1 cubic spline can be constructed.
Theorem 2 allows a broad range of admissible tangent directions. Then the
spline is constructed locally. A natural question arises, which is the optimal
admissible tangent direction. The answer is given by the following theorem.

Theorem 6 The optimal tangent directions di, such that the approximate
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strain energy (7) is minimized, are obtained by di := wi/‖wi‖, (10), and

λi =
2 (∆ti)

3
ui · vi

A1 ±
√

A2

, (11)

with

A1 := (∆ti−1)
3 ‖∆T i‖2 + 2 (∆ti)

3
ui · vi − (∆ti)

3 ‖∆T i−1‖2,

A2 :=
(

(∆ti)
3 ‖∆T i−1‖2 − (∆ti−1)

3 ‖∆T i‖2
)2

+ 4 (∆ti−1)
3 (∆ti)

3 (ui · vi)
2.

If ui · vi = 0, then

a) λi = 0 if zi = −1, or
b) λi = 1 if zi = 1.

PROOF. Our goal is to find optimal tangent directions di, such that the ap-
proximate strain energy (7) is minimized. Recall that if the tangent directions
are already known, by Theorem 2 optimal αi are obtained. Since the direction
di appears just in two neighbouring segments in (8), it is enough to minimize
the expression

2

∆ti−1

∥
∥
∥
∥
∥
αi,1di −

1

∆ti−1

∆T i−1

∥
∥
∥
∥
∥

2

+
2

∆ti

∥
∥
∥
∥

1

∆ti
∆T i − αi+1,0di

∥
∥
∥
∥

2

.

By using Theorem 2 and (10), computing partial derivatives on λi, and a
somewhat tedious computation, the following quadratic equation is obtained

ρ(λi) := λ2
i

(

((∆ti−1)
3 − (∆ti)

3)ui · vi + (∆ti)
3 ‖∆T i−1‖2 − (∆ti−1)

3 ‖∆T i‖2
)

+ λi

(

(∆ti−1)
3 ‖∆T i‖2 + 2 (∆ti)

3
ui · vi − (∆ti)

3 ‖∆T i−1‖2
)

− (∆ti)
3

ui · vi = 0.

Note that ρ(0) ρ(1) < 0, which implies that there is always a unique solution
in (0, 1). This determines the choice of the sign in (11). The case ui · vi = 0
has to be analyzed separately. This concludes the proof.

For a particular parameterization, the expression (11) considerably simplifies.
In this case a part of A2 vanishes together with the square root. The following
result is obtained.

Corollary 7 For the 2/3-parameterization (see [7]),

∆ti−1

∆ti
=

(

‖∆T i−1‖
‖∆T i‖

) 2

3

,
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the optimal tangent directions di lie on bisectors of angles ∠(ui,vi),

λi :=
‖∆T i‖

‖∆T i−1‖ + ‖∆T i‖
.

5 Numerical examples

Let us conclude the paper by some numerical examples. The cubic G1 Hermite
interpolant can closely resemble the C2 cubic interpolating spline (Fig. 4),
but for non-uniformly distributed data points (exchange of short and long
segments) larger differences between the curve shapes can occur.

The influence of the shape parameters λi on the curve can be clearly seen in
(Fig. 4, right). For a comparison, approximate strain energies (3) for all the
curves are computed. Clearly the energy of the C2 spline is the smallest, but
in some cases a simple ad-hoc procedure of selecting the bisector direction as
an admissible tangent direction, gives a curve with suitably small approximate
strain energy.

Fig. 4. The cubic G1 Hermite interpolant (black) closely resembles the C2 cubic
interpolating spline (gray) (left figure). Approximate strain energies are 218.8 and
144.3, respectively. The optimal cubic G1 Hermite interpolant (black) together with
the one, obtained by an ad-hoc bisector choice of admissible tangent directions
are shown in the right figure. Approximate strain energies are 599.2 and 740.1,
respectively.

In Fig. 5, a comparison of curves, obtained by our method and [20], is pre-
sented. The data points are sampled from a unit circle. Since the algorithm in
[20] requires tangent directions, two versions are considered. In the left figure,
the gray curve is obtained by using tangents sampled from the circle, and in
the right figure it is obtained by using tangent directions, computed by our
method.
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Fig. 5. Comparison of the cubic G1 Hermite interpolant (black) with [20] using the
data points and tangent directions sampled from a unit circle (left), and using the
tangent directions, computed by our algorithm (right).

In general, the method from [20] needs preprocessing and inserting new, arti-
ficial points. There are 11 particular cases, but not all of them are explicitly
derived. This makes an objective comparison of methods hard to do. Thus in
Fig. 5 the data were chosen in such a way that no additional points were re-
quired. The results show that the shapes of both curves are comparable. The
time complexities of both methods are similar. Our method requires some
additional operations for tangent direction computation, however, [20] needs
tangent directions as data, and additional operations are needed for choosing
a particular of 11 subroutines and new data construction.
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