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ON GEOMETRIC INTERPOLATION BY PLANAR
PARAMETRIC POLYNOMIAL CURVES

GAŠPER JAKLIČ, JERNEJ KOZAK, MARJETA KRAJNC AND EMIL ŽAGAR

Abstract. In the paper the problem of geometric interpolation of planar data
by parametric polynomial curves is revisited. The conjecture that a paramet-
ric polynomial curve of degree ≤ n can interpolate 2n given points in R2 is
confirmed for n ≤ 5 under certain natural restrictions. This conclusion also
implies the optimal asymptotic approximation order. More generally, the op-
timal order 2n can be achieved as soon as the interpolating curve exists.

1. Introduction

Geometric interpolation by parametric polynomial curves has received consider-
able attention since it was introduced in [2]. Perhaps one of the reasons for this
is the fact that the interpolating curve depends on parametrization-independent
geometric quantities such as data points, tangent directions, curvatures, etc. This
makes the geometric interpolant a valuable tool in the computer aided geometric
design. Furthermore, it is well known that geometric interpolation schemes can
provide interpolating curves of high accuracy. In [4] it has been conjectured that a
parametric polynomial curve of degree n in Rd can interpolate n+1+b(n−1)/(d−1)c
given data. There are only a few results for a particular choice of parameters n
and d. The most general result (but still not optimal) is [9] and it confirms that
n+1+ b(n+1)/(2d− 1)c points can be interpolated at least asymptotically. Obvi-
ously this conjecture is particularly interesting in low dimensions, i.e., d = 2, 3. In
the planar case it reduces to a guess that 2n data values can be interpolated, and
the approximation order 2n achieved. Compared to the functional case this would
be a much stronger result.

But unfortunately, geometric interpolating schemes are nonlinear. This draw-
back makes it hard to analyse the existence of the interpolating curve and to estab-
lish the approximation order. Numerical computations have to be done with some
care too, usually by the continuation method ([1]). Thus it is quite clear why the
analysis of geometric interpolation schemes is usually based upon the assumption
that data are sampled densely enough from a smooth curve, and the asymptotic
analysis is applied. Perhaps there is only one exception to the above approach,
observed in [10, 7, 8, 3] and extended to the general d in [5], i.e., the case n = d.
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In this paper geometric interpolation by planar parametric polynomial curves
is studied, and the conjecture in [4] reconsidered. In section 2 the interpolation
problem is formulated and the equations that determine the interpolating curve
are derived. Sections 3 and 4 provide a general setup for the asymptotic analysis
and the study of the approximation order. The last section outlines the asymptotic
analysis for n = 5. The main conclusions of the paper are: if the data, sampled
from a convex smooth curve, are close enough, then

• equations that determine the interpolating polynomial curve are derived
for general n (Theorem 4.5),

• if the interpolating polynomial curve exists, the approximation order is 2n
for general n (Theorem 4.6),

• the interpolating polynomial curve exists for n ≤ 5 (Theorem 4.7).
In order to keep the paper technically as simple as possible, only Lagrange inter-

polation is discussed. However, section 4, in particular Theorem 4.5, reveals that
the results of the asymptotic analysis can be carried over to the multiple geometric
interpolation (interpolation of a point, a tangent direction at that point, a curva-
ture at that point, etc.), as well as to the Taylor interpolation case considered in
[8, 11].

2. Interpolation problem

The interpolation problem is formulated as follows. Suppose that a sequence of
2n distinct points TTTTTTTTT 0, TTTTTTTTT 1, . . . , TTTTTTTTT 2n−1 in the plane R2 is given. Find a parametric
polynomial curve

PPPPPPPPPn : [0, 1] → R2

of degree ≤ n that interpolates the given points at some values t` ∈ [0, 1] in in-
creasing order, i.e.,

(2.1) PPPPPPPPPn(tj) = TTTTTTTTT j , j = 0, 1, . . . , 2n− 1.

Since a linear transformation of the parameter preserves the degree of a parametric
polynomial curve, one can assume t0 := 0 and t2n−1 := 1, but the remaining
parameters

ttttttttt := (t`)2n−2
`=1

are unknown, ordered as

t0 = 0 < t1 < · · · < t2n−2 < t2n−1 = 1.

The system of equations (2.1) should determine the unknown PPPPPPPPPn as well as the
parameters ttttttttt. But the two tasks can be separated if one can provide enough lin-
early independent functionals, depending on ttttttttt only, that map PPPPPPPPPn to zero. Divided
differences, based upon ≥ n + 2 values, are a natural choice. Let us apply the
divided differences

(2.2) [tj−1, tj , . . . , tn+j ], j = 1, 2, . . . , n− 1,

to both sides of (2.1). Since deg Pn ≤ n, the left side vanishes, and so should the
right one. But the t` are distinct and this condition becomes

(2.3)
n+j∑

`=j−1

TTTTTTTTT `

n+j∏
m=j−1

m6=`

(t` − tm)

= 0, j = 1, 2, . . . , n− 1.
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This nonlinear system depends on the data TTTTTTTTT ` and the unknowns ttttttttt only. For each
j it provides two equations based upon the first and the second component of the
data. The solution of the system (2.3) may or may not exist. The difficult part
of the interpolation problem is to find it. If the unknowns ttttttttt have been already
determined it is straightforward to obtain the polynomial curve PPPPPPPPPn. One only has
to take any n+1 distinct interpolating conditions in (2.1), and apply any standard
linear interpolation scheme to PPPPPPPPPn componentwise.

3. Asymptotic approach

It seems hard to analyse the nonlinear system of equations (2.3) without addi-
tional restrictions. Here, the asymptotic approach will be applied, with the assump-
tion that the points TTTTTTTTT ` are sampled from a smooth regular convex planar parametric
curve fffffffff : [0, h] → R2. The length of the parameter interval h is supposed to be
small enough so that a local expansion of fffffffff around 0 can be applied. Affine trans-
formations of the points TTTTTTTTT ` transform (2.3) to an equivalent form. Thus one can

assume fffffffff(0) =
(

0
0

)
and fffffffff ′(0) =

(
1
0

)
, and parameterize fffffffff by the first component

fffffffff(x) =
(

x
y(x)

)
,

where y expands as
(3.1)

y(x) =
1
2
y′′(0)x2 +

1
3!

y(3)(0)x3 + · · ·+ 1
(2n− 1)!

y(2 n−1)(0)x2 n−1 +O(x2 n).

The curve is assumed to be convex, which implies y′′(0) > 0. We will be looking
for the values of fffffffff at small values of h, therefore the coordinate system needs an
appropriate scaling by the matrix

Dh := diag
(

1
h

,
2

y′′(0)h2

)
.

Now let TTTTTTTTT ` be the points on the curve f , taken at different parameter values in
[0, h]. Then for some η`,

(3.2) η0 := 0 < η1 < · · · < η2n−2 < η2n−1 := 1,

the data points are chosen as TTTTTTTTT ` = Dhf(η`h). Their expansion in h is

(3.3) TTTTTTTTT ` =




η`
∞∑

k=2

ckhk−2ηk
`


 , ` = 0, 1, . . . , 2n− 1.

Here, the constants ck depend on y, but not on η` or h, i.e.,

ck =
2
k!

y(k)(0)
y′′(0)

, k = 2, 3, . . .
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4. System of equations in asymptotic form

In this section the system (2.3) is analysed, where the data points are given by
(3.3) and h is small enough. As far as the existence of the solution is concerned,
one has to show that there exists h0 > 0, such that the system (2.3) has a solution
ttttttttt for all h, 0 ≤ h ≤ h0. The solution is easy to guess at the limit value h = 0, i.e.,

(4.1) ttttttttt = ηηηηηηηηη := (η`)2n−2
`=1 ,

since

lim
h→0

TTTTTTTTT ` =
(

η`

η2
`

)

and

[ηj−1, ηj , . . . , ηn+j ]η

(
η
η2

)
=

(
0
0

)
, j = 1, 2, . . . , n− 1.

In view of (4.1) it is important to study the unknown differences

(4.2) η` − t`, ` = 1, 2, . . . , 2n− 2,

as functions of h. It does not matter if (4.2) is studied with η` given and t` unknown
or vice versa. From now on it will be simpler to assume that ttttttttt are given parameters
and ηηηηηηηηη are the unknowns, as in [8]. Furthermore, the system of equations (2.3) will
be rewritten in an equivalent form, with divided differences (2.2) replaced by their
linear combinations, i.e.,

(4.3) [t0, t1, . . . , tn+j ], j = 1, 2, . . . , n− 1.

With the notation

ωj(t) :=
n+j∏

`=0

(t− t`), ω̇j(t) :=
dωj(t)

dt
, j = 1, 2, . . . , n− 1,

the system (2.3) is transformed into

(4.4)
n+j∑

`=0

1
ω̇j(t`)

TTTTTTTTT ` = 0, j = 1, 2, . . . , n− 1.

Of course, the limit properties of the system are preserved, since the linear trans-
formation from (2.2) to (4.3) is invertible.

Unfortunately, the implicit function theorem can not be applied to extend the
limit solution ηηηηηηηηη = ttttttttt continuously to h > 0 for n > 2. This is obvious from the
following theorem.

Theorem 4.1. Let J be the Jacobian of the system (4.4) with respect to the un-
knowns ηηηηηηηηη at h = 0. Then

dimkerJ = n− 2.

Proof. The Jacobian J is easily computed from

(4.5)
(

∂

∂ηm
TTTTTTTTT `

)∣∣∣∣
η=t,h=0

=
(

δ`,m

2δ`,m t`

)
, `, m = 1, 2, . . . , 2n− 2,

and from the system (4.4). Let

xxxxxxxxxT
i := (0, . . . , 0︸ ︷︷ ︸

2i−2

,−2, 0,−2tn+1+i, 1, 0, 0, . . . , 0)T , i = 1, 2, . . . , n− 2.
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Observe that

(
xxxxxxxxxT

i J
)
m

=





− 2
ω̇i(tm)

− 2tn+1+i

ω̇i+1(tm)
+

2tm
ω̇i+1(tm)

= 0, m = 1, 2, . . . , n + i,

− 2tn+1+i

ω̇i+1(tm)
+

2tn+1+i

ω̇i+1(tm)
= 0, m = n + 1 + i,

0, otherwise.

But the xxxxxxxxxT
i are linearly independent, hence dimkerJ ≥ n− 2. Let

M := J

(
2 1 3 5 · · · 2n− 3
1 2 3 4 · · · n

)
· diag(ω̇n−1(t1), ω̇n−1(t2), . . . , ω̇n−1(tn)).

It is easy to see that M = (φj(tm))n,n
j=1,m=1, where the polynomials φj are given as

φ1(t) := 2t

2n−1∏

`=n+2

(t− t`), φj(t) =
2n−1∏

`=n+j

(t− t`), j = 2, 3, . . . , n.

This implies that M must be nonsingular. If not, its rows would be linearly depen-
dent and there would exist a polynomial

∑n
j=1 γjφj of degree ≤ n− 1 with n roots

tm, m = 1, 2, . . . , n, an obvious contradiction. So rank J ≥ n and the result of the
lemma follows. ¤

Thus a more refined existence analysis has to be applied. The system of equations
(4.4) will now be split in two parts, the equations determined by the first compo-
nents of the points TTTTTTTTT `, and the equations provided by the second ones. A proper
reparametrization of the curve fffffffff , the idea heavily leaned upon in [8], will yield a
simple solution of the first part. Let us introduce new unknowns ξξξξξξξξξ := (ξ`)2n−2

`=1 by
a reparametrization of the curve fffffffff as

(4.6) η → η(t) := η(t; ξξξξξξξξξ),

given at t` as

(4.7) η` = η(t`; ξξξξξξξξξ) = t` + u(t`; ξξξξξξξξξ) + ξn−2+`h
n−1p(t`), ` = 1, 2, . . . , 2n− 2,

where ξ` := 0, ` > 2n− 2. Furthermore, let

(4.8) p(t) := (t− t0)
2n−1∏

`=n+1

(t− t`), u(t; ξξξξξξξξξ) := (t− t0)(t− t2n−1)
n−2∑

j=1

ξjh
jtj−1.

The reparametrization (4.6) is quite clearly regular for ξξξξξξξξξ bounded independently of
h and h small enough, since

η(t0; ξξξξξξξξξ) = t0 = 0 = η0, η(t2n−1; ξξξξξξξξξ) = t2n−1 = 1 = η2n−1, η′(t; ξξξξξξξξξ) = 1 +O(h).

The limit conditions η` = t` at h = 0 are fulfilled too.

Lemma 4.2. The change of variables ηηηηηηηηη → ξξξξξξξξξ introduced in (4.7) is one-to-one.

Proof. Note that p(t`) = 0, ` = n + 1, n + 2, . . . , 2n − 2. So (4.7) provides the
conditions η` = t` + u(t`; ξξξξξξξξξ), ` = n + 1, n + 2, . . . , 2n− 2, that uniquely determine
the polynomial

n−2∑

j=1

ξjh
jtj−1

of degree < n − 2 since t` are distinct. But then the rest of the new unknowns
(ξ`)2n−2

`=n−1 are obtained from (4.7) by choosing ` = 1, 2, . . . , n. ¤
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Let TTTTTTTTT ` be given by (3.3), with the reparametrization (4.7) applied. The system
(4.4) can now be written as

FFFFFFFFF (ξξξξξξξξξ; h) := (Fj(ξξξξξξξξξ;h))n−1
j=1 = 000000000,

GGGGGGGGG(ξξξξξξξξξ; h) := (Gj(ξξξξξξξξξ; h))n−1
j=1 = 000000000,

(4.9)

where

(4.10) Fj(ξξξξξξξξξ; h) :=
n+j∑

`=0

1
ω̇j(t`)

(
t` + u(t`; ξξξξξξξξξ) + ξn−2+`h

n−1p(t`)
)
,

and

Gj(ξξξξξξξξξ; h) :=
n+j∑

`=0

1
ω̇j(t`)

( ∞∑

k=2

ckhk−2
(
t` + u(t`; ξξξξξξξξξ) + ξn−2+`h

n−1p(t`)
)k

)
.

The following result has been conjectured from some numerical experiments.

Theorem 4.3. The unknowns ξξξξξξξξξ can solve (4.9) if and only if

(4.11) ξn−1 = ξn = ξn+1 = · · · = ξ2n−2.

Proof. A divided difference is a linear functional, so the functions Fj , defined in
(4.10), can be simplified to

Fj(ξξξξξξξξξ; h) = [t0, t1, . . . , tn+j ]t (t + u(t; ξξξξξξξξξ)) + hn−1

n+j∑

`=0

1
ω̇j(t`)

ξn−2+` p(t`)

= hn−1

n+j∑

`=0

1
ω̇j(t`)

ξn−2+` p(t`),(4.12)

since the polynomial t + u(t; ξξξξξξξξξ) is of degree ≤ n − 1 in t. Further, the polynomial
p is of the particular form (4.8) and deg p = n, so it follows that (4.10) reads

0 =
n+j∑

`=0

1
ω̇j(t`)

ξn−2+` p(t`) =
n+j∑

`=0

1
ω̇j(t`)

ξn−2+` p(t`)− ξn−1

n+j∑

`=0

1
ω̇j(t`)

p(t`)

=
n+j∑

`=0

1
ω̇j(t`)

(ξn−2+` − ξn−1) p(t`)

=
n∑

`=2

1
ω̇j(t`)

(ξn−2+` − ξn−1) p(t`).

It is easy to verify that the square matrix

A :=
(

1
ω̇j(t`)

)n−1;n

j=1;`=2

is nonsingular by finding a closed form of det A (see [6], e.g.). So it can map only
the trivial vector to 000000000. Since p(t`) 6= 0, ` = 2, 3, . . . , n, the term ξn−2+` − ξn−1

should vanish for all ` concerned, and the claim (4.11) follows. ¤

Theorem 4.3 pins down the choice ξj = ξn−1, j = n, n + 1, . . . , 2n− 2, that will
be assumed from now on. The rest of the unknowns (ξ`)

n−1
`=1 should be determined
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by the second part of equations (4.9). But (4.11) simplifies the reparametrization
(4.6) to a polynomial

(4.13) η(t; ξξξξξξξξξ) = t + u(t; ξξξξξξξξξ) + ξn−1h
n−1p(t),

and further Gj(ξξξξξξξξξ; h) to

(4.14) Gj(ξξξξξξξξξ; h) = [t0, t1, . . . , tn+j ]
∞∑

k=2

ckhk−2η(. ; ξξξξξξξξξ)k.

In order to study (4.14) further the following lemma is needed.

Lemma 4.4. Let

q(t; ξξξξξξξξξ) := t +
n−1∑

`=1

ξ`h
`t`+1.

Then

[t0, t1, . . . , tn+j ]η(. ; ξξξξξξξξξ)k = [t0, t1, . . . , tn+j ]q(. ; ξξξξξξξξξ)k +O(hn+j+1−k),

and
[t0, t1, . . . , tn+j ]q(. ; ξξξξξξξξξ)k = O(hn+j−k).

Proof. Let us introduce some new notation. If r is a polynomial in variables t and
h, then let

(4.15) termdegt(r) ≤ termdegh(r)

denote that for every term tαi hβi of r, the exponents αi and βi satisfy the relation
αi ≤ βi.
From (4.8) it is straightforward to verify that

termdegt(η) ≤ termdegh(η) + 1,

where η is given by (4.13). Furthermore, the difference η − q turns out as

η(t; ξξξξξξξξξ)− q(t; ξξξξξξξξξ) = (−(t0 + t2n−1)t + t0t2n−1)
n−2∑

j=1

ξjh
jtj−1

+ξn−1h
n−1

(
(t− t0)

2n−1∏

`=n+1

(t− t`)− tn

)
,

and clearly termdegt(η − q) ≤ termdegh(η − q). But

η(t; ξξξξξξξξξ)k = q(t; ξξξξξξξξξ)k +
k∑

j=1

(
k

j

)
(η(t; ξξξξξξξξξ)− q(t; ξξξξξξξξξ))j

q(t; ξξξξξξξξξ)k−j ,

and q(t; ξξξξξξξξξ)k satisfies

(4.16) termdegt(q
k) = termdegh(qk) + k.

On the other hand, a brief look at the remaining sum yields

(4.17) termdegt(η
k − qk) ≤ termdegh(ηk − qk) + k − 1.

The divided difference [t0, t1, . . . , tn+j ]t maps polynomials in t of degree < n + j to
zero. So the monomials with degree = n + j will provide the leading term of the
error. But then (4.16) and (4.17) confirm the lemma. ¤
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Lemma 4.4 simplifies the functions (4.14) to

(4.18) Gj(ξξξξξξξξξ; h) = [t0, t1, . . . , tn+j ]
∞∑

k=2

ckhk−2q(. ; ξξξξξξξξξ)k +O(hn+j−1),

and the following conclusion provides the final form of the system (4.9).

Theorem 4.5. The expansion referenced in (4.18) could be rewritten as
∞∑

k=2

ckhk−2q(t; ξξξξξξξξξ)k =
∞∑

k=2

Ck(ξξξξξξξξξ)hk−2tk,(4.19)

where

Ck(ξξξξξξξξξ) :=
2

k! hky′′(0)

(
dk

dxk
y (h q(x; ξξξξξξξξξ))

)∣∣∣∣
x=0

.

The polynomials Ck(ξξξξξξξξξ) depend on ξξξξξξξξξ only, but not on h or the parameters ttttttttt. So the
final form of the system (4.9), for h small enough, is given as

(4.20) Cn+j(ξξξξξξξξξ) +O(h) = 0, j = 1, 2, . . . , n− 1.

Proof. Let us recall the proof of Lemma 4.4 and the notation (4.15). A close look
reveals that

termdegt(h
k−2qk) = termdegh(hk−2qk) + 2,

hence (4.19) follows. But then

1
hn+j−2

Gj(ξξξξξξξξξ;h) = Cn+j(ξξξξξξξξξ) +O(h) = 0, j = 1, 2, . . . , n− 1.

¤

Let us sum up all the asymptotic conclusions.

Theorem 4.6. If there exists h0 > 0, such that the system of nonlinear equations
(4.20) has a real solution for all h, 0 ≤ h ≤ h0, then the interpolating polynomial
parametric curve PPPPPPPPPn exists and approximates fffffffff with the optimal approximation
order, i.e., 2n.

Proof. The proof will follow the path already applied in [2]. If the interpolating
curve PPPPPPPPPn is reparametrized by a regular reparametrization ϕ : [0, h] → [0, 1] in such
a way that

(4.21) (PPPPPPPPPn ◦ ϕ) (hη`) = fffffffff(hη`), ` = 0, 1, . . . , 2n− 1,

the error analysis can be applied to each component separately, using the standard
approach for the function case. But this implies that the optimal approximation
order 2n is achieved, provided ‖ (PPPPPPPPPn ◦ ϕ)(2n) ‖ remains bounded for all h small
enough.

By assumption the system (4.20) has a real solution and the unknown parameters
ttttttttt exist. Thus one can represent the curve PPPPPPPPPn in the Lagrange form,

(4.22) PPPPPPPPPn =
(

P1

P2

)
=

n∑

`=0

fffffffff(hη`)L`, L`(t) :=
n∏

j=0
j 6=`

t− tj
t` − tj

.
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For the particular coordinate system, chosen in section 3, a reparametrization ϕ :=
P−1

1 is a proper choice. Indeed, from (4.22) and (4.7) it follows

(4.23) P1(t) =
n∑

`=0

(hη`) L`(t) = h

n∑

`=0

η(t`; ξξξξξξξξξ)L`(t) = hη(t; ξξξξξξξξξ),

since the polynomial η(. ; ξξξξξξξξξ), defined in (4.13), is of degree ≤ n. Note that

P1(0) = hη(0; ξξξξξξξξξ) = 0, P1(1) = hη(1; ξξξξξξξξξ) = h, P1(t) = ht +O(h2).

So P1 is a diffeomorphism [0, 1] → [0, h] for h small enough. The interpolation
conditions (4.21) are satisfied, since

(
PPPPPPPPPn ◦ P−1

1

)
(hη`) = PPPPPPPPPn(t`) = fffffffff(hη`), ` = 0, 1, . . . , 2n− 1,

and ϕ := P−1
1 is the required reparametrization. In order to prove the boundedness

of (PPPPPPPPPn ◦ ϕ)(2n) we apply the chain rule derivation to PPPPPPPPPn◦P−1
1 . As already observed

in [2] for the cubic case, and in [3] for general n, it suffices to see that P ′1(t) =
ch +O(h2), c 6= 0, and

P
(k)
i (t) = O(hk), i = 1, 2, k = 2, 3, . . . , 2n.

Obviously P ′1(t) = h +O(h2). Since deg Pi ≤ n, it is enough to consider 2 ≤ k ≤ n
only. The case i = 1 follows immediately from (4.13) and (4.23). As to the other,

P2(t) =
n∑

`=0

y(hη`)L`(t) =
n∑

`=0

y(hη(t`; ξξξξξξξξξ))L`(t).

Let us recall the expansion (3.1) from which we observe that the sums involved are
n∑

`=0

(hη(t`; ξξξξξξξξξ))
m L`(t) =

n∑

`=0

hmtm` L`(t) +O(hm+1), m ≥ 2.

Since the interpolation is a projection on the space of polynomials of degree ≤ n,
the proof is complete. ¤

Theorem 4.7. The system of nonlinear equations (4.20) has a real solution for
n ≤ 5, and h small enough.

Proof. If n = 2, the system (4.20) simplifies to one linear equation for ξ1,

2 ξ1 + c3 +O(h) = 0,

which obviously has a real solution. The case n = 3 is easy to analyse too, since
the nonlinear system in this case is

ξ2
1 + 3 c3 ξ1 + 2 ξ2 + c4 +O(h) = 0,(4.24)

3 c3 ξ2
1 + 2 ξ1 (ξ2 + 2 c4) + 3 c3 ξ2 + c5 +O(h) = 0.

But the first equation is always linear in ξn−1 = ξ2. So (4.24) can be reduced to a
cubic equation for ξ1,

ξ3
1 +

3
2

c3 ξ2
1 +

(
9
2

c2
3 − 3 c4

)
ξ1 +

3
2

c3 c4 − c5 +O(h) = 0,

and the conclusion follows. The case n = 4 will be omitted since the proof is, in the
first part, very similar to that given in [11] and the other part is technically quite
complicated. The proof for the case n = 5 will be given in the following section. ¤
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5. The case n = 5.

Let us now consider the case n = 5. After elimination of the variable ξ4 = ξn−1

the system (4.20) becomes

(5.1) Pi(ξ1, ξ2, ξ3) +O(h) = 0, i = 1, 2, 3,

with

P1(ξ1, ξ2, ξ3) :=

−c3 ξ4
1 −

(
3
2 c2

3 + 2 c4

)
ξ3
1 − (9 c3 c4 − 5 c5) ξ2

1 −
(

15
2 c3 c5 − 5 c6

)
ξ1

+
(

3
2 c3 − ξ1

)
ξ2
2 +

(
6 c3 c4 − 5 c5 +

(
9 c2

3 − 8 c4

)
ξ1 − 3 c3 ξ2

1

)
ξ2

− (
9
2 c2

3 − 4 c4 + 2 ξ2
1 − 2 ξ2

)
ξ3 − 3

2 c3 c6 + c7,

P2(ξ1, ξ2, ξ3) :=

− (
3 c2

3 − c4

)
ξ4
1 − (20 c3 c4 − 10 c5) ξ3

1 −
(
12 c2

4 + 15 c3 c5 − 15 c6

)
ξ2
1

− (10 c4 c5 + 3 c3 c6 − 7 c7) ξ1 − 2 c4 c6 + c8 − ξ3
2 − 6 c3 ξ1 ξ2

2

− (
8 c2

4 − 5 c6 + (24 c3 c4 − 15 c5) ξ1 +
(
18 c2

3 − 6 c4

)
ξ2
1 − c3 ξ3

1

)
ξ2

+ξ2
3 −

(
6 c3 c4 − 5 c5 +

(
9 c2

3 − 8 c4

)
ξ1 + 3 c3 ξ2

1 − (3 c3 − 2 ξ1) ξ2

)
ξ3,

P3(ξ1, ξ2, ξ3) :=

− 3
2 c2

3 ξ5
1 − (15 c3 c4 − 5 c5) ξ4

1 −
(
36 c2

4 + 10 c3 c5 − 20 c6

)
ξ3
1

− (
45 c4 c5 + 3

2 c3 c6 − 21 c7

)
ξ2
1 −

(
25
2 c2

5 + 6 c4 c6 − 8 c8

)
ξ1 − 5

2 c5 c6 + c9

−2 c3 ξ3
2 −

(
12 c3 c4 − 15

2 c5 +
(
18 c2

3 − 6 c4

)
ξ1 + 3

2 c3 ξ2
1

)
ξ2
2

− (
10 c4 c5 + 3 c3 c6 − 7 c7 +

(
24 c2

4 + 30 c3 c5 − 30 c6

)
ξ1

− (60 c3 c4 − 30 c5) ξ2
1 +

(
12 c2

3 − 4 c4

)
ξ3
1

)
ξ2

−2 ξ1 ξ2
3 −

(
15
2 c3 c5 − 5 c6 + (18 c3 c4 − 10 c5) ξ1 +

(
9
2 c2

3 + 6 c4

)
ξ2
1

−4 c3 ξ3
1 −

(
9 c2

3 − 8 c4 + 6 c3 ξ1

)
ξ2 − ξ2

2

)
ξ3.

The terms O(h) in (5.1) will be neglected for the moment. Let R[ξ1, ξ2, . . . , ξi]
denote the ring of polynomials in variables ξ1, ξ2, . . . , ξi over R. A straightforward
approach to the system (5.1) is right at hand: compute the Gröbner basis of the
ideal

(5.2) I := 〈P1, P2, P3〉 ⊂ R[ξ1, ξ2, ξ3],

and study the properties of the zeros of this basis, i.e., the variety V(I), the set of
common zeros of Pi, i = 1, 2, 3. But this approach is computationally too complex,
and some ad hoc simplification is needed. The key conclusion is summarized in the
following lemma.

Lemma 5.1. Let I be the ideal given in (5.2) and let I2 := I ∩ R[ξ1] denote the
second elimination ideal, obtained from I after elimination of ξ3 and ξ2. Then
V(I2) = V(Q) where Q is a polynomial of degree ≤ 25 in ξ1, given as

Q(ξ1) =
14641
65536

(
5 c2

3 − 4 c4

)5
ξ25
1

− 3025
131072

(
5 c2

3 − 4 c4

)4 (
1043 c3

3 − 1988 c3 c4 + 824 c5

)
ξ24
1 + . . .
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Proof. Consider the system (5.1). The first equation is linear in ξ3, and can be
written as

(5.3) P1(ξ1, ξ2, ξ3) = ψ1(ξ1, ξ2) + ψ2(ξ1, ξ2) ξ3 = 0, ψ1, ψ2 ∈ R[ξ1, ξ2].

Similarly, the modified third equation

(5.4) P3(ξ1, ξ2, ξ3) + 2 ξ1P2(ξ1, ξ2, ξ3) = χ1(ξ1, ξ2) + χ2(ξ1, ξ2) ξ3 = 0,

with χ1, χ2 ∈ R[ξ1, ξ2], turns out to be linear in ξ3 too. One can now use the
equation (5.3) to eliminate ξ3, and the system (5.1) becomes

P12(ξ1, ξ2) := ψ2(ξ1, ξ2)2 P2

(
ξ1, ξ2,−ψ1(ξ1, ξ2)

ψ2(ξ1, ξ2)

)
= 0,(5.5)

P13(ξ1, ξ2) := χ1(ξ1, ξ2) ψ2(ξ1, ξ2)− χ2(ξ1, ξ2) ψ1(ξ1, ξ2) = 0.

Finally, the resultant of P12 and P13 with respect to ξ2 is a single equation

R1(ξ1) := Res (P12(ξ1, ξ2), P13(ξ1, ξ2); ξ2) = 0.

The variety V(R1) ⊇ V(I2) may include some extraneous zeros introduced by the
factor ψ1(ξ1, ξ2)2 in (5.5) or by the resultant Res. Also, the variety V does not
precisely keep track of the multiple zeros, and the number of zeros of R1 counting
multiplicities could be bigger than the number of elements in V(R1), i.e., #V(R1).
The elimination procedure described provides also the extension path: if ξ1 ∈ V(I2),
the equations (5.5) determine ξ2, and (5.3) finally ξ3, except when ψ2(ξ1, ξ2) = 0,
since then (5.3) leaves ξ3 undefined. But then, at the first elimination step, one
may choose the equation (5.4) rather than (5.3) to eliminate ξ3. The equation (5.5)
would be replaced by

P32(ξ1, ξ2) := χ2(ξ1, ξ2)2 P2

(
ξ1, ξ2,−χ1(ξ1, ξ2)

χ2(ξ1, ξ2)

)
= 0,

and one would finally be left with

R2(ξ1) := Res (P32(ξ1, ξ2), P13(ξ1, ξ2); ξ2) = 0.

Thus any ξ1 ∈ V (R1) ∩ V (R2) that is not extraneous can be extended to the
complete solution of the system (5.1) provided ψ2(ξ1, ξ2) 6= 0 or χ2(ξ1, ξ2) 6= 0.
Using computer algebra system, the polynomials R1 and R2 can be factorized as

(5.6) R1(ξ1) = ν1(ξ1)2 Q(ξ1), R2(ξ1) = −ν2(ξ1)2 Q(ξ1),

where νi form a basis of the elimination ideals

〈ν1〉 = 〈ψ1, ψ2〉 ∩ R[ξ1], ν1(ξ1) = 4 ξ5
1 + 10 c3 ξ4

1 +
(
60 c2

3 − 40 c4

)
ξ3
1 + . . . ,

and
〈ν2〉 = 〈χ1, χ2〉 ∩ R[ξ1], ν2(ξ1) =

(
5 c2

3 − 4 c4

)
ξ12
1 + . . .

and Q has the form as written in Lemma 5.1. If ν1 and ν2 have no common divisors,
they are obviously extraneous factors in the equation (5.6), and

(5.7) V(I2) ⊆ V(Q).

If ν1(ξ1) = 0, ν2(ξ1) = 0 for some ξ1 ∈ C then Res (ν1(ξ1), ν2(ξ1); ξ1) = 0 gives
a tremendous, but polynomial relation between the constants ci that has to be
satisfied. So the measure of the set of constants

{(c3, c4, . . . , c9) ∈ R7; ν1(ξ1) = 0, ν2(ξ1) = 0}
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is zero, and one may extend (5.7) to all possible constants by the continuity. Note
that the inclusion (5.7) shows also that if ξ1 = ξ1(c3, c4, . . . , c9) ∈ V(I2) grows
unboundedly or decreases from infinity as a function of the constants ci so must
the corresponding ξ1 ∈ V(Q). So the difference of the number of solutions

#V(Q)−#V(I2) ≥ 0

is independent of the constants ci. But for a particular choice of the constants

c3 = 1, c4 =
1
2
, c5 = −1, c6 = 1, c7 = 0, c8 = −1

2
, c9 = 1

it is straightforward to verify that V(I2) is equal to V(Q) since #V(I2) = #V(Q) =
25. ¤

Thus only the roots of Q have to be considered. If the degree of Q is odd, then
Q has at least one real root ξ1 of odd multiplicity, which can be extended to a real
element of V(I). Since ξ1 ∈ R is of odd multiplicity, a perturbation O(h) preserves
the existence of a real solution, and the system (5.1) has at least one real solution
for all h small enough.

There remains to verify that Q 6≡ 0 is of odd degree. The first step is obvious
from Lemma 5.1 since Q is of degree 25 unless the leading term vanishes. In this
case,

c4 =
5
4
c2
3, Q(ξ1) = −1953125

1048576
(
7 c3

3 − 4 c5

)4
ξ23
1 + . . .

and further,

c4 =
5
4
c2
3, c5 =

7
4
c3
3, Q(ξ1) = −1953125

65536
(
21 c4

3 − 8 c6

)4
ξ19
1 + . . .

The additional assumptions

c6 =
21
8

c4
3, c7 =

33
8

c5
3, c8 =

429
64

c6
3

reduce the degree of Q to 15, 11 and 7. Note that regardless of the particular

constants ci the polynomial Q remains to be odd. Finally, the choice c9 =
715
64

c7
3

gives Q ≡ 0, and any ξ1 ∈ R is suitable. It is not difficult to guess where this
particular data curve comes from. One can easily verify that in this case

9∑

k=2

ckhk−2xk

is the Taylor polynomial of the function

y(x) =
1

2c2
− x

c
−
√

1− 4cx

2c2
, c :=

h

2
c3.

A straightforward computation leads to one of the possible reparametrizations of fffffffff

fffffffff(z) =
(

cz − c3z2

c2z2

)
, z := z(c) :=

1−√1− 4 c x

2c2
.

Thus fffffffff is a quadratic parametric polynomial. This remains true also as c3 →
0, since y(x) → x2 in this case. Of course, the quintic geometric interpolation
reproduces the quadratic parametric polynomial.



ON GEOMETRIC INTERPOLATION BY PLANAR PARAMETRIC POLYNOMIAL CURVES13

References

[1] Eugene L. Allgower and Kurt Georg, Numerical continuation methods, Springer Series
in Computational Mathematics, vol. 13, Springer-Verlag, Berlin, 1990, An introduction.
MR MR1059455 (92a:65165)
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