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IT IS EASY TO DETERMINE WHETHER
A GIVEN INTEGER IS PRIME

ANDREW GRANVILLE
Dedicated to the memory of W. ‘Red’ Alford, friend and colleague.

ABSTRACT. “The problem of distinguishing prime numbers from composite numbers, and
of resolving the latter into their prime factors is known to be one of the most important
and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern
geometers to such an extent that it would be superfluous to discuss the problem at length.
Nevertheless we must confess that all methods that have been proposed thus far are either
restricted to very special cases or are so laborious and difficult that even for numbers that
do not exceed the limits of tables constructed by estimable men, they try the patience of
even the practiced calculator. And these methods do not apply at all to larger numbers ... It
frequently happens that the trained calculator will be sufficiently rewarded by reducing large
numbers to their factors so that it will compensate for the time spent. Further, the dignity of
the science itself seems to require that every possible means be explored for the solution of a
problem so elegant and so celebrated ... It is in the nature of the problem that any method will
become more complicated as the numbers get larger. Nevertheless, in the following methods
the difficulties increase rather slowly ... The techniques that were previously known would
require intolerable labor even for the most indefatigable calculator.”
from article 329 of Disquisitiones Arithmeticae (1801) by C. F. GAUSS.

In August 2002, three Indian computer scientists, Manindra Agrawal, Neeraj Kayal
and Nitin Saxena, constructed a “polynomial time primality test”, a much sought-after
but elusive goal of researchers in the algorithmic number theory world. Most shocking was
the simplicity and originality of their test ... whereas the “experts” had made complicated
modifications on existing tests to gain improvements, these authors rethought the direction
in which to push the usual ideas with stunning success. Their algorithm is based on the
following elegant characterization of prime numbers.

Agrawal, Kayal and Saxena (2004). For given integer n > 2, let r be a positive integer
for which n has order > (logn)? modulo r. Then n is prime if and only if

e n is not a perfect power,
e 1 does not have any prime factor < r,
e (x4+a)"=2"+a (mod (n,z" — 1)) for each integer a,1 < a < /rlogn.

Typeset by ApS-TEX



2 ANDREW GRANVILLE

In this talk we will explain their test, with complete proofs, and put the result and ideas
in appropriate historical context. Details will be elaborated on in a forthcoming article.

1.1. Our objective is to find a “quick” foolproof algorithm to determine whether a given
integer is prime. Everyone knows trial division, when we try to divide n by every integer
m in the range 2 < m < y/n. The number of steps in this algorithm will be at least the
number of integers m we consider, which is something like y/n, in the worst case (when n
is prime). Note that \/n is roughly 24/2 where d is the number of digits of n when written
in binary (and d is roughly (logn)/(log2)).

The objective in this area has been to come up with an algorithm which works in no
more than cd? steps in the worst case, where ¢ and A are some fixed positive constants; that
is, an algorithm which works in Polynomial Time (which is often abbreviated as P). With
such an algorithm one expects that one can rapidly determine whether any “reasonably
sized” integer is prime.

Before the work of Agrawal, Kayal and Saxena the fastest algorithm worked in about
d'81°8d gteps. Their algorithm works in about d”-° steps (and thus “Seven-and-a-half logs
suffice” ); and a modification by Lenstra and Pomerance in about d° steps.

1.2. Recognizing primes. Are there ways to recognize primes other than by trial divi-
sion? One way that comes to mind is by using

Wilson’s Theorem (1770). Integer n > 2 is prime if and only if n divides (n — 1)! + 1.

The problem here though is that there is no obvious way to compute (n — 1)! rapidly
(or even (n —1)! (mod n)). Another idea is to use

Matijasevié’s polynomial (1970). There exists a polynomial f(x1, 22, ..., To) € Llx1,Ta, ..., Tog]
of degree 25, with the property that the set of positive values f(my,mo, ..., mag) where
my,...,Mog are all taken to be positive integers, is the same as the set of primes.

We might hope to somehow quickly identify whether a given integer is a value of f,
but no one has yet figured out how.

There are many places that primes come up in the mathematical literature, and many of
these might suggest a way to identify primes — some of us who are interested in primality
testing always look at anything new that we learn with one eye open to this application.
However, for the remainder of this first half of my talk I want to focus on one classical
approach.

1.3. Prime numbers have many interesting properties. One of the most amazing
is known as

Fermat’s Little Theorem (1637). If n is a prime then n divides " — a for all integers
a.

Conversely, if integer n does not divide a™ — a for some integer a, then n is composite.
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For example!, taking a = 2 we calculate that
21901 = 123 (mod 1001),

so we know that 1001 is composite.
We might ask whether this always works. In other words,
Is it true that if n is composite then n does not divide 2™ — 27
For, if so, we have a very nice way to distinguish primes from composites. Unfortunately
the answer is “no” since, for example,

2341 =2 (mod 341),
but 341 = 11 x 31. Note though that by taking a = 3 above we get
3341 = 168  (mod 341),

so we can use these ideas to prove that 341 is composite.
But then we might ask whether this always works, whether there is always some value
of a that helps us prove a composite n is indeed composite.
In other words,
Is it true that if n is composite then there
is some integer a for which n does not divide a™ — a?

Again the answer is “no” since 561 divides a®®! — a for all integers a, yet 561 = 3 x 11 x
17. Composite integers n which divide a™ — a for all integers a are called Carmichael
numbers, 561, 1105 and 1729 being the smallest three examples. Carmichael numbers are
a nuisance, masquerading as primes like this, though computationally they only appear
rarely. Unfortunately it was recently proved that there are infinitely many of them, and
that when we go out far enough they are not so rare as it first appears.

1.4. Square Roots. In a field, a non-zero polynomial of degree d has at most d roots.
For the particular example 2 — 1 this implies that 1 has just two squareroots mod p, a
prime > 2, namely 1 and —1.

If we consider odd composite n then we quickly find 12 = 42 = 112 = 142 (mod 15),
that is, there are four squareroots of 1 (mod 15). In general if odd n is divisible by two
distinct primes then we have at least four distinct squareroots of 1 (mod n). Thus we
might try to prove n is composite by finding a squareroot of 1 (mod n), which is neither
1 nor —1.

Now, by Fermat’s Little Theorem, if p is prime then (aprl)2 = aP7! = 1 (mod p),
so a’7 (mod p) is a squareroot of 1 mod p and must be 1 or —1. Therefore if a"
(mod n) is neither 1 nor —1 then n is composite. Let’s try an example: We have 644 = 1
(mod 949), and the squareroot 64%7* = 1 (mod 949). Hmmmm, we failed to prove 949 is

LA few definitions for the uninitiated: We say that a = b (mod m) if and only if m divides b — a;
the main advantage of this notation is that we can do most regular arithmetic operations (mod m). The
order of n (mod m) is the least positive integer k for which n* =1 (mod m).
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composite like this but, wait a moment, since 474 is even so we can take the squareroot
again, and a calculation reveals that 64237 = 220 (mod 949), so that 949 is composite. In
general, integer a is a witness to n being composite if the finite sequence

™' (mod n), a2 (mod n),..., a™ V2" (mod n)

(where n — 1 = 2"v with v odd) is not equal to either 1,1,...;1or 1,1,..., 1, —1 %, ... x*.
It is known that, for all odd composite n, at least three-quarters of the integers a, 1 <
a < n are witnesses for n. So can we find a witness “quickly” if n is composite?

e One ideais to try a = 2, 3,4, ... consecutively until we find a witness. We believe that
there is a witness < 2(logn)?, though we cannot prove this except under the assumption
of a big tool, the Generalized Riemann Hypothesis.

e Pick integers a in {1,2,3,...,n} at random until we find a witness. By what we
wrote above, if n is composite then the probability that none of the first k£ integers chosen
are witnesses is < 1/4%. Thus with a hundred or so such tests we get a probability that
is so small that it is inconceivable that it could occur in practice; so we believe that any
integer n for which none of a hundred randomly chosen a’s is a witness, is prime. We call
such n “industrial strength primes”.

The big problem with the above method is that although we strongly believe that an
industrial strength prime is indeed a prime, we have no proof, and mathematicians like
proof. Indeed if you claim such integers are prime, without proof, then a cynic might not
believe that your randomly chosen a are so random, or that you are unlucky, or ... No,
what we need is a proof that a number is prime when we think that it is.

1.5. Proofs and the complexity class NP.
At the 1903 meeting of the American Mathematical Society, F.N. Cole came to the
blackboard and without a word wrote down

207 _ 1 = 193707721 x 761838257287,

long-multiplying the numbers out on the right side of the equation, and determining the
decimal expansion of 27 — 1 to prove that he was indeed correct. Afterwards he said that
figuring this out had taken him “three years of Sundays”. The moral of this tale is that
although it took Cole a great deal of work and perseverance to find these factors, it did
not take him long to justify his result to a room full of mathematicians (and, indeed, to
give a proof that he was correct). Thus we see that one can provide a short proof, even if
finding that proof takes a long time.

In general one can exhibit factors of a given integer n to give a short proof that n is
composite (such proofs are called certificates). By “short” we mean that the proof can
be verified in polynomial time, and we say that such problems are in class NP (“non-
deterministic polynomial time?”). We are not suggesting that the proof can be found in
polynomial time, only that the proof can be checked in polynomial time; indeed we have

2Note that NP is not “non-polynomial time”, a common source of confusion.
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no idea whether it is possible to factor numbers in polynomial time, and this is now the
outstanding problem of this area.

What about primality testing? If someone gives you an integer and asserts that it
is prime, can you check that this is so is in polynomial time? Can they give you better
evidence than their say-so that it is a prime number? Can they provide some sort of
“certificate” that gives you all the information you need to verify that the number is
indeed a prime? It is not, as far as I can see, obvious how to do so; certainly not as
obvious as with the factoring problem. It turns out that some old remarks of Lucas from
the 1870’s can be modified for this purpose:

First note that n is prime if there are precisely n—1 integers a in therange 1 < a < n—1
which are coprime to n. Therefore if we can show the existence of n — 1 such integers then
we have a proof that n is prime. In fact if n is prime then these values form a cyclic group,
and so have a generator ¢; that is, there exists an integer ¢ for which 1, g, ¢%,...,¢" 2 are
all coprime to n and distinct mod n. Thus to show that n is prime we need simply exhibit
g and prove that these numbers are distinct mod n. In fact g is a generator if and only if
g has order n — 1 (mod n). It can be shown that any such order must divide n — 1, and
so one can show that if ¢ is not a generator then ¢(»~1/4 =1 (mod p) for some prime ¢
dividing n—1. Thus a “certificate” to show that n is prime would consist of g and {q prime
: ¢ divides n — 1 }, and the checker would need to verify that ¢"~! =1 (mod n) whereas
g™ D/a 21 (mod p) for all primes ¢ dividing n — 1, something that can be accomplished
in polynomial time.

There is a problem though: One needs certification that each such ¢ is prime. The solu-
tion is to iterate the above algorithm; and one can show that no more than (logn)/(log2)
odd primes need to be certified after one has iterated all the way down. Thus we have a
polynomial time certificate (short proof) that n is prime, and so primality testing is in the
class NP.

But isn’t this the algorithm we seek? Doesn’t this give a polynomial time algorithm
for determining whether a given integer n is prime? The answer is “no” because along the
way we would have to factor n — 1 quickly, something no-one knows how to do.

1.6. Random polynomial time algorithms.

In section 1.4 we introduced the notion of “industrial strength primes”. In fact if our
given integer is composite then there is a probability of at least 1/2 that each application
of that “witness” test succeeds in providing a short certificate verifying that the number
is composite (the certificate provides a witness a). This is a random polynomial time test
for compositeness (complexity class RP). As we noted it is almost certain to provide such
a proof in 100 runs of the test if n is indeed composite, so if it fails then it is very likely
that n is prime. Our main objection was that this doesn’t provide a proof that n is prime.

One objective, just short of finding a polynomial time test for primality, is to find a
random polynomial time test for primality. This was achieved by Adleman and Huang
in 1992 using a method of counting points on elliptic and hyperelliptic curves over finite
fields (based on ideas of Goldwasser and Kilian). Although beautiful in structure, their
test is very complicated and almost certainly impractical, as well as being rather difficult
to justify theoretically in all its details. It does however provide a short certificate verifying
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that a given prime is prime, and proves that primality testing is in complexity class RP.

1.7. An old beginning.

The new work of Agrawal, Kayal and Saxena is much simpler than many of the more
recent developments in this subject. Their starting point is the following result, which is
good exercise for an elementary number theory course.

Theorem 1. Integer n is prime if and only if (x + 1)" = 2™ 4+ 1 (mod n) in Zx].

Proof. Since (z +1)" — (2" +1) = >0 (;.L):Ej, we have that 2" +1 = (x + 1)"
(mod n) if and only if n divides (?) for all j in the range 1 < j <n — 1. If n = p is prime
then p appears in the numerator of (?) but is larger than, and so does not divide, any term
in the denominator.

If n is composite let p be a prime dividing n. In the expansion (Z) =n(n—1)(n —
2)...(n—(p—1))/p! we see that the only terms p divides are the n in the numerator and
the p in the denominator, and so if p* is the largest power of p dividing n then p*~! is the
largest power of p dividing (;L); and therefore n does not divide (;L) 0

This simple theorem is the basis of the new primality test: Why don’t we compute
(x+1)"— (2™ +1) (mod n) and determine whether or not n divides each coefficient? This
is a valid primality test, but computing (z + 1) (mod n) is obviously slow since it will
involve storing n coefficients!

Since our difficulty is that the answer here involves many coefficients (as the degree is
so high), one idea is to compute mod some small degree polynomial as well as mod n, so
that neither the coefficients nor the degree get large. The simplest polynomial of degree r
is perhaps 2" — 1. So we could verify whether

(x4+1)"=2"+1 (mod (n,z" —1)).

This can be computed rapidly, and it is true for any prime n (as a consequence of the
theorem above), but it is unclear whether this fails for all composite n and thus provides
a primality test. The main theorem (at the start of the talk) provides a modification
of this congruence, which can be shown to succeed for primes and fail for composites,
thus providing a polynomial time primality test. In the second part of our talk we shall
investigate this in detail.

1.Appendix. Fast Exponentiation.

An astute reader might ask how we can raise something to the nth power “quickly”
(where by “quickly” we mean that the number of steps is bounded by a power of logn).
This problem was beautifully solved by computer scientists long ago:

We wish to compute (x + a)” (mod (n,2" — 1)) quickly. Define fo(z) = (z + a) and
then fj11(z) = fj(x)? (mod (n,z" — 1)) for j > 0 (at each step we determine f;(z)? and
then reduce mod z" — 1 so the degree of the resulting polynomial is < r, and then reduce
mod n to obtain f;1). Note that f;(z) = (z +a)? (mod (n,z" — 1)).
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Writing n in binary, say as n = 2% 4+ 292 + ... 4+ 2% with ay > as > --- > ay > 0,
let g1(z) = fa,(z) and then g;(z) = g;—1()fs,; () (mod (n,2" — 1)) for j = 1,2,..., L.
Therefore

ge(z) = (x+a)?" 22T — (2 4 @)™ (mod (n,z" —1)).

Thus we have computed (z 4 a)™ (mod (n,z" —1)) in a3 + ¢ < 3logn such steps, where a
step involves multiplying two polynomials of degree < r with coefficients in {0, 1,...,n—1},
and reducing (mod (n,z"” —1)).

2. PROOF OF THE THEOREM. THE AKS ALGORITHM

In the second half of the talk we will prove the theorem of Agrawal, Kayal and Saxena.
We will assume that we are given an odd integer n which we know is not a perfect power,
and has no prime factor < r. For simplicity we will assume that n has order > 9(logn)?
modulo r, and that?

(1) (x4+a)"=2"4+a (mod (n,z" —1))

for each integer a,1 < a < A where we take A = 3y/rlogn. (One can replace each of
the constants “9” and “3” by “1” with extra work). By Theorem 1 we know that these
hypotheses hold if n is prime, so we must show that they cannot hold if n is composite.

Let p be a prime dividing n. We can factor 2" —1 into irreducibles in Z[z], as [ [, @ (),
where ®,.(x) is the rth cyclotomic polynomial, whose roots are the primitive rth roots of
unity. Let h(x) be an irreducible factor of ®,.(x) (mod p). Then (1) implies that

(2) (x+a)"=2"4+a (mod (p,h(x)))

for each integer a,1 < a < A, since (p, h(x)) divides (n,x" — 1).

The congruence classes (mod (p, h(x))) are really the elements of the ring Z[x|/(p, h(x)),
which is isomorphic to the field of p™ elements (where m is the degree of h). In particular
the non-zero elements form a cyclic group of order p™ — 1. (Below it will be occasionally
convenient to suppress the “mod” notation.)

Let G be the (cyclic) subgroup generated by « + 1,2 + 2,...,2 + A. Notice that if
9(@) =Ti<qca(® +a)* € G then

g(@)" = [[(@+a))e = [[a" +a)* = g(«")  (mod (p, h())).

a a

We define S to be the set of integers k for which g(z*) = g(x)* for all g € G. Note that
p,neSs.
Our plan is to give upper and lower bounds on the size of G to establish a contradiction.

2.1. Upper bounds on |G|.

3We write f(x) = g(z) (mod (m,h(x))) where m is an integer and f(z),g(x),h(x) € Z[z] if there
exists u(zx),v(z) € Z[z] for which f(z) — g(z) = mu(z) + h(z)v(z)
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Lemma 1. Ifa,be S then ab e S.

Proof. (Here we work in the ring Z[z]/(p, h(x))). If g(z) € G then g(z%) = g(z)* € G
since G is a group. Therefore g((z%)%) = g(z%)® as b € S and so

g9(2)* = (9(2)*)" = g(z")" = g((%)") = g(2*).

Lemma 2. Ifa,be S and a=b mod r then a =b mod |G|.

Proof. For any g(x) € Z[z] we have that u —v divides g(u) — g(v). Therefore 2" —1 divides
7% — 1, which divides 2 — 2, which divides g(2%) — g(x%). Reducing mod p, so that
h(z) divides 2" — 1, we deduce that g(x)® = g(z?) = g(2°) = g(z)® in Z[z]/(p, h(z)) for
all g € G, and so g(z)* ? =1 for all g € G. Now G is a cyclic group, so taking g to be a
generator of G we deduce that |G| divides a — b.

Let R be the subgroup of (Z/rZ)* generated by n and p. Since n is not a power of p, the
integers n'p? with 4, j > 0 are distinct. There are > |R| such integers with 0 <4, j < \/|R|
and so two must be congruent (mod r), say

n'p’ =nlp?  (mod r).

By Lemma 1 these integers are both in S. By Lemma 2 their difference is divisible by |G],
and therefore

(3) G| < |nip? — nlp?| < (np)VIF < n2VIEL

2.2. Lower bounds on |G|.

We wish to show that there are many distinct elements of G. If f(x), g(z) € Z[x] with
f(z) = g(z) (mod (p, h(x))) then we can write f(x) — g(x) = h(z)k(z) mod p for some
polynomial k(x) € Z[z]. Thus if f and g both have smaller degree than h then k(z) =0
(mod p) and so f(z) = g(x) (mod p). Thus all polynomials of the form [[, ., 4(z —a)%
of degree < m (the degree of h(z)) are distinct elements of G, and this gives a lower bound
for G. One can show that m is the order of p (mod r) and so if one can show that this
value is large then we can get good lower bounds on G.

This was what Agrawal, Kayal and Saxena did in their first preprint, and to prove such
r exist they needed to use deep tools of analytic number theory. In their second preprint,
inspired by a remark of Lenstra, they were able to replace m by |R| in this result, which
allows them to give an entirely elementary proof of their theorem, and to get a stronger
result when they do invoke the deeper estimates.

Lemma 3. Suppose that f(x),g(x) € Z|x] with f(x) = g(z) (mod (p, h(x))), and f,g €
G. If f and g both have degree < |R| then f(z) = g(x) (mod p).

Proof. Let A(y) := f(y) —g(y). If k € S then
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It can be shown that = has order » mod (p, h(x)) so that {z* : k € R} are all distinct
roots of A(y) mod (p, h(x)). Now, A(y) has degree < |R|, but > |R| distinct roots mod
(p, h(x)), and so A(y) = 0 mod (p, h(z)), which implies that A(y) = 0 (mod p) since its
coefficients are independent of .

By definition R contains all the elements generated by n (mod r), and so R is at
least as large as the order of n (mod r), which is > 9(logn)? by assumption. Therefore
A, |R| > B, where B := [3\/|R|logn]. Lemma 3 implies that the products [],.,(z + a)
for every T'C {1,2,..., B} give distinct elements of G, and so

G| > 2B > n2VIE

since 23 > €2, which contradicts (3). This completes the proof of the theorem of Agrawal,
Kayal and Saxena.

2.3. Running time.

One can write an algorithm (using standard techniques) to test the steps of the theorem
of Agrawal, Kayal and Saxena, which runs in roughly r3/2(logn)? steps (bit operations).

We must have r > (logn)? since n must have order > (logn)? mod r; and thus we would
not expect the AKS algorithm to run in much fewer than (logn)® steps. It is expected that
there exists a prime r in [1 + (logn)?2, 2(logn)?] for which n is a primitive root (mod r),
and thus has order* r» — 1 mod r. Therefore we expect (and it is borne out in practice)
that we have a running time of around (logn)®. However we cannot prove that such r
exist.

In the next section we will give an elementary proof that such an r exists with  around
(log n)3, which thus leads to a running time of around (logn)!% (since 101 = 2 x 5 4 3).

In the accompanying article I will show how basic tools of analytic number theory can
be used to show that such an r exists with r around (logn)?*/7 (using an old argument of
Goldfeld), which leads to a running time of around (logn)87

Using much deeper tools, a result of Fouvry® implies that such an r exists with » around
(logn)3, which leads to a running time of around < (log n)7%. This can be improved using
a recent result of Baker and Harman to (logn)”49.

2.4. Large orders mod r.
The prime number theorem can be paraphrased as: The product of the primes up to

x is roughly e*. A weak explicit version states that the product of the primes between N
and 2N is > 2N for all N > 1.

Lemma 4. If n > 6 then there is a prime r € [(logn)5,2(logn)?] for which the order of
n mod r is > (logn)?.

4In fact, it should suffice to restrict attention to primes r for which (r — 1)/2 is also prime.

5Fouvry’s 1984 result was at the time immediately applied to prove a result about Fermat’s Last
Theorem (then an open problem). In the accompanying article we will see how other tools developed to
attack Fermat’s Last Theorem can be used on the problem here.
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Proof. If not, then the order of n mod r is < I := (log n)2 for every prime r € [N, 2N]
with IV := (logn)®, so that their product divides [l;<;(n' —1). But then

oV < ] <[ —1) <nXert < olosn”,
N<r<2N i<I

for n > 6, giving a contradiction.

The bound on r here holds for all n > 6, and thus using this bound our running time
analysis of AKS is effective; that is, one can explicitly bound the running time of the
algorithm for all n > 6. In the better bounds on r discussed in the previous section, the
proofs are not effective, in that they do not imply how large n must be in order for the
given upper bound for r to hold.

3. EVEN MORE RECENT DEVELOPMENTS

Can we achieve the feasible (logn)® running time? One approach is to achieve better
lower bounds on the size of G (than were obtained in section 2.2): Although this has not
yet been done in a way to achieve our goal, Voloch had the beautiful idea that one can
bound how often different high degree products of (z 4+ a) can be equal (mod (p, h(z)))
by using the abc-theorem for polynomials. However this goal has now been achieved in
a different manner: Lenstra and Pomerance have extended the idea in AKS (with extra
complications) to obtain the desired running time of around (logn)® steps, as we will
discuss in the next section.

Following up on ideas of Berrizbeitia, Bernstein has modified AKS to obtain an algo-
rithm that runs in around (log n)?* steps, but which only succeeds half the time in providing
a certificate of primality; in other words this is an RP algorithm for primality testing which
is faster, easier and more elegant than that of Adleman and Huang. In practice this makes
the original AKS algorithm irrelevant. For if we run the “witness” test, which is an RP
algorithm for compositeness, by day, and run the AKS-Berrizibeita-Bernstein RP algorithm
for primality by night, then a number n is, in practice, certain to yield its secrets faster
(in around (logn)* steps) than by the original AKS algorithm!

3a. Stop the press: Lenstra and Pomerance achieve the desired running time.

Lenstra and Pomerance replace the polynomial ®,.(z) in AKS by a polynomial f(z)
with certain properties: If f(z) is a monic polynomial of degree m with integer coefficients
and n is a positive integer for which

e f(z") =0 mod (n, f(x)),
) .I‘nm — 2 =0 mod (naf(x))7
e 27" _ 1 is a unit in Z|z]/(n, f(x)) for all primes ¢ dividing m,

then we say that Z[z]/(n, f(x)) is a pseudofield. When n is prime and f(x) is irreducible
mod n then these criterion are all true, and Z[x]/(n, f(x)) is a field.
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Lenstra and Pomerance. For given integer n > 2 let m be a positive integer > 4(logn)?
for which there exists a monic polynomial f(z) of degree m with integer coefficients, such
that Z[x]/(n, f(x)) is a pseudofield. Then n is prime if and only if

e n is not a perfect power,
e n does not have any prime factor < A := 2 /mlogn,
o (z+a)"=2"+a mod (n, f(x)) for each integer a,1 < a < A.

Evidently for a given f one can quickly determine whether one gets a pseudofield,
and if so check the criteria of the theorem. Thus if we can quickly find an f which
gives a pseudofield this approach will lend itself to a quick primality test. Lenstra and
Pomerance’s construction of f comes back full circle to Gauss’s Disquisitiones, and his
construction of regular n-gons, in particular what are now known as “Gaussian periods”.
For M := 4(logn)? their polynomial has degree ¢iqs...qr € (M,4M] where the ¢; are
coprime positive integers for which there exists a prime r; < M such that n("i—1/% hag
order ¢; mod r; for each 7. They show how to determine these numbers, and thus f, in
less than (logn)? bit operations, once n is bigger than some ng, which can be effectively
determined.
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