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1. INTRODUCTION

A connected graph G is distance regular if, given any two vertices u, v of G' and any integers

1 and j, the number of vertices at distance ¢ from u and j from v depends only on 7, j

and the distance between u and v. Since u and v may coincide, G must be regular. Some

examples are the complete and the complete multipartite graphs, the cycles, the n-cubes,
the 1-skeletons of the Platonic solids, Petersen’s graph and its line graph. Distance regular
graphs were introduced in late 1950’s by Biggs [B1] as a generalization of distance transitive
graphs. These are graphs that have automorphisms sending any ordered pair of vertices at
distance r to any other such pair, for all . All the above examples are distance transitive.
Obviously, any distance transitive graph is distance regular, but there are also distance
regular graphs which are not distance transitive (see for example [Sh]). We can think
about distance regularity as a weakening of the condition of distance transitivity; instead
complete symmetry of a graph, there is just numerical regularity. In this sense distance
regularity is a combinatorial approximation of the algebraic property of ‘being distance
transitive’. Thus it is natural to expect an interlacing of the combinatorial and algebraic
approaches. Distance regular graphs of diameter two are also known as connected strongly
regular graphs. These graphs can be treated as extremal graphs and have been studied
extensively (for basic properties see Cameron, van Lint [CL], Seidel [Se]). Distance regular
graphs also have interesting connections with areas other than algebra: in Combinatorics
with Coding theory, Finite geometries, Design theory, Hadamard matrices, in Functional

analysis with orthogonal polynomials (see [CS], [BCN] and [God2]). These graphs are a

special class of association schemes, a concept which has been studied intensively (see for

example BI1).

Distance regular graphs are divided into primitive and imprimitive ones. The latter
graphs are either antipodal or bipartite (or both) and they give rise to primitive graphs of
half the diameter. Therefore the big project of classifying distance regular graphs goes in
two stages:

(a) find all primitive distance regular graphs (see Bannai and Ito [BI1], [BI2])

(b) given a distance regular graph G find all imprimitive graphs, i.e., bipartite distance
regular graphs or antipodal distance regular graphs, called distance regular antipodal
covers of G, which give rise to G.

(There are also other approaches to classifying distance regular graphs, for example by

their valency [BI3] or by multiplicities of their eigenvalues [Zhu].)

The first part of (b) was studied by Hemmeter [Hel], [He2]. Also some work has been

done on antipodal distance regular covers of complete and complete bipartite graphs (see

3



for example [GH], [Hen]). They give rise to nice combinatorial objects, for example to
projective planes, Hadamard matrices and even to more general objects such as square
group divisible designs. Inspired by this, we investigate in this report antipodal distance
regular covers of strongly regular graphs which are not complete bipartite graphs.

In chapter 2 we give some basic definitions and state few properties of distance regular
graphs in general and about strongly regular graphs in particular. In chapter 3 we establish
the relation between the parameters of distance regular graphs and their distance regular
antipodal covers, and prove few existence conditions for distance regular antipodal covers.
Chapter 4 introduces the concept of eigenvalues and equitable partitions of a graph. The
eigenvalues and their multiplicities of a distance regular graph can be expressed with its
parameters. Integrality conditions on these multiplicities give us very strong existence
conditions for a distance regular graph with certain parameters. We prove that the pa-
rameters of a distance regular graph determine also the eigenvalues of its distance regular
antipodal cover. This result is stated in [BCN] and proved in unpublished manuscript by
Brouwer and Gardiner [BG], which we were unable to get. Its enable us to prove new
existence conditions for distance regular antipodal covers. In particular, we present a new
result by Tilla Schade stating that a distance regular antipodal cover of diameter five can
have at most two irrational eigenvalues. The fact that the parameters of the distance
regular graph determine parameters, eigenvectors, eigenvalues and their multiplicities of
its distance regular antipodal covers is restrictive enough that some constructions of dis-
tance regular antipodal covers of complete and complete bipartite graphs were made. But
this does not suffice in the case when we are searching for the distance regular antipodal
covers of strongly regular graphs which are not complete bipartite. So we are looking for
new restrictions for such graphs and study the ‘geometry’ of distance regular graphs with
antipodal covers. Van Bon and Brouwer [BB] proved that manely all classical distance
regular graphs of large diameter have no distance regular antipodal covers, but in general
nothing is known. In chapter 5 we prove two of their theorems. We use their geometric
conditions to show that two important infinite families of strongly regular graphs, namely
Steiner graphs and Latin square graphs, cannot have any distance regular antipodal covers
(this is joint work with Tilla Schade). In chapter 6 we give an equivalent definition of
covers with permutations assigned to the edges of a graph and we prove a new existence
condition for antipodal covers in general, which was pointed to us by Chris Godsil. We give
an example of its use. In chapter 7 we describe how we searched for feasible parameters
of strongly regular graphs with small valency (up to 100) and feasible parameters of their
distance regular antipodal covers. We present the list of them which was generated by

computer.



2. DISTANCE REGULAR GRAPHS
Let G be a graph. The distance between vertices u and v of a graph G will be the length

of a shortest path between u and v, denoted with dists(u,v) or just dist(u,v) when this
is not ambiguous.

Let u be a vertex of a graph G. Then S, (u) denotes the set of vertices at distance
exactly r from u. We call S,.(u) a sphere of radius r centered at u, or the r-th neighbourhood
of u. In particular we use S(u) for S;(u) and call it the neighbourhood of a vertex wu.

Let G be a distance regular graph of diameter d. For vertices v and v at distance
r and integers 4, j let p;;(r) denote the value [S;(u) N S;(v)|. By the definition of a
distance regular graph, this value does not depend on the choice of v and v at a distance
7. The numbers p;;(r) are called the intersection numbers of G. The valency of G is then
p11(0) = |S(u)| and will be denoted by k. We will also give special names to some other

intersection numbers. For vertices v and v at distance r we define:

k, =p,.(0) =S, (u)|, forr=0,1,...,d,

,
a, =p.1(r)=|Sw)NS,.(u)], forr=1,2,...,d,
by =Pry11(r) =[S(0)N S, 11 (u)|, forr=0,1,...,d-1,
c, :pr—1,1(7') =|S(w)NS,_1(uw)|, forr=1,2,...,d.
Set ag =¢cy =b; =0, thena, +b,.+c, =k forr=0,...,dand by =k, ¢c; = 1. All the

intersection numbers are determined by the numbers in the intersection array

{bgs b1y -y bg_1;C15Coy -+ Cq}

of G. This can be proved by induction on ¢ using the following recurrence relation:

Cj11Pi j+1(1) + a0 (r) +b;_1p; j_1(r) = ¢ p1Pi1 (1) + a;p;;(r) +b;_1p;_1 ;(7)

obtained by counting for vertices v and v at distance r the edges with one end in S;(u)
and another in S;(v) in two different ways. (Note that distance regular graph need not
be uniquely determined by its parameters, the smallest such example is the Schrikhande
graph, see [BCN].)

The property of the intersection array, that it determines all intersection numbers,
suggests viewing a distance regular graph G with diameter d in terms of its distance

partition 7, = {{u}, S;(u), ..., Sy(u)} corresponding to a vertex u (see Figure 1).
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w o Si(u)  Sp(w)  Spa(w) S(w)  Sppa(w)  Sya(w) Sg(u)

Figure 1: The distance partition.

The following result gives us the basic properties of the parameters a;, b;, c¢; and k;

of a distance regular graph (for proof see for example [BCN]):

2.1 LEMMA. Let G be a distance regular graph with valency k and diameter d. Then

the following holds:

(a) k,_1b;_; =k;c;, fori=1,..,d.

(b) 1=c¢; <cy<...<¢y.

(c) k=by>b;>...>bg_4>0.

(d) if i+j < d thenc; <b,.

(e) if i+ j <d andi < j, thenk, < k;.

(f) the sequence k; is unimodal, i.e., ky < ... <k, =...=k > ... > k; for some h and
lwithl<h<l<d O

We are now going to have a closer look at a special class of distance regular graphs
called strongly regular graphs which were introduced by Bose [Bo| and have been inten-
sively studied since (see e.g. [CL], [Se]). A strongly regular graph is a k-regular graph with
the property that the number of common neighbours of two vertices u and v is either A or
i depending on whether u and v are adjacent or not. Some examples are the quadrangle,
the pentagon, the direct product of two triangles and the Petersen’s graph.

It can be easily seen that the complement of a strongly regular graph with parameters
(n, k, A, ) is also strongly regular and has parameters (n,n—k—1,n—2k+p—2,n—2k+X\).
Also, by counting in two ways the number of triples of distinct vertices u, v, w with u
adjacent to v, u adjacent to w and v not adjacent to w, we find that the parameters of a

strongly regular graph satisfy
k(k—X—1)=pu(n—k—1).
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The connected strongly regular graphs are precisely the distance regular graphs of diameter
two. They have intersection array {k,k— A —1;1, u}, so that A = a; and u = ¢,. The only
disconnected strongly regular graphs are the disjoint unions of a number of isomorphic
complete graphs; these are the only strongly regular graphs with 4 = 0. As we are not
considering disconnected strongly regular graphs nor their complements (these are the

complete multipartite graphs), we always assume
max{0,2k —n+1} <A<k—2 and max{l,2k—n+2}<pu<k-1

Strongly regular graphs which satisfy these inequalities will be called nontrivial strongly

regular graphs.

For a graph G of diameter d we define the i-th distance graph G, to be the graph
with the same vertex set as GG, and with two vertices adjacent if and only if they are at
distance ¢ in the graph G. We call G imprimitive if for some 7, 1 < 7 < d, the graph
G, is disconnected or, equivalently, if for some non-empty proper subset I of {0,1,...,d}
having distance in [ is an equivalence relation on the vertex set of G. A graph which is
not imprimitive is primitive. Petersen’s graph is a primitive graph of diameter two and
with intersection array {3,2;1,1}.

A graph G of diameter d is antipodal if the vertices at distance d from a given vertex
are all at distance d from each other. Then being at distance d induces an equivalence
relation on the vertices of GG, and the equivalence classes are called antipodal classes. For
example the line graph of Petersen’s graph is a distance regular antipodal graph of diameter
three with intersection array {4,2,1;1,1,4}. The only antipodal graphs of diameter two are
complete multipartite graphs K, (1y,(2)..r(s) With 7(1) = ... =r(s) and they are bipartite
only when s = 2.

Smith [Sm] proved the following remarkable theorem for distance transitive graphs,

but the proof can be easily extended to arbitrary distance regular graphs.

2.2 THEOREM. An imprimitive distance regular graph with valency greater than two
is either bipartite or antipodal (or both). U

This result can also be expressed as follows: for k > 2, if having distance in I is an
equivalence relation, then I = {0} or I = {0,d} or I = {0,2,4,...} or I ={0,1,...,d}.
For a connected bipartite graph G of diameter at least two G, has two components.
The graphs induced on these components are called halved graphs of the graph G and are
distance regular (see [BG]). If G is distance transitive both halves are isomorphic, but in

general this is not true, an example is Tutte’s 12-cage (see [BCN]).
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For an antipodal graph G we define the folded graph of G' to be the graph @) with
the antipodal classes (i.e. the components of G;) as vertices, where two components are
adjacent if they contain adjacent vertices. The graph () is also known as the antipodal
quotient of G and is distance regular whenever G is (see [Ga] or [Hen]).

Imprimitive distance regular graph G with valency greater than two give us after
halving at most once and folding at most once a primitive distance regular graph. For a
more precise statement and proof see [BCN] or [Hen].

If the partition of some set consists of the set itself or of the all singletons of the set,
we call it trivial partition.

Suppose that G is some graph with a nontrivial partition 7 of its vertices into cells
satisfying the following conditions:

(a) each cell is an independent set,

(b) between any two cells there are either no edges or there is a matching.

Let G/7 be the graph with the cells of 7 as vertices and with two of them adjacent if and
only if there is a matching between them. Then we say that G is a cover of G/m and we
call the cells fibres. If G/m is connected, then all cells have the same size which is called
the index of the cover, and is denoted by r. In this case G is called an r-cover of G/7.

We can give an equivalent definition of a cover H of GG using the projection map p from
V(H) to V(G). We say that H is a cover of G if there is a map p : V(H) — V(G) called a
projection which is a graph morphism and a local isomorphism. Then {p~'(u),u € G} is
the set of fibres and r = |[p~!(u)| is the index of the covering. If we consider our graphs as
simplicial complexes, coverings graphs are covering spaces in the usual topological sense.

If a graph G is a cover of G/m and 7 consists of its antipodal classes, then G is called
an antipodal cover. Furthermore, if the graph G is also distance regular, we say that G is
a distance regular antipodal cover. For example 1-skeleton of the dodecahedron with its
pairs of antipodal vertices is a distance regular antipodal 2-cover of Petersen’s graph. (Note
that if you move each second vertex on emphasized cycle (see Figure 2) to its antipodal
vertex, then the emphasized cycle will make two five-stars.) Another example is the line
graph of Petersen’s graph is a distance regular antipodal 3-cover of K.

For the proof of the following lemma we need one more definition. A geodesic in a

graph G is a path g, ..., g,, where dist(gy, g;) = t.

2.3 LEMMA. A distance regular antipodal graph G of diameter d is a cover of its

antipodal quotient with components of G, as its fibres unless d = 2.

Proof. The complete graphs cannot be covers of any graphs. The statement does not hold

for the complete multipartite graphs which are the only distance regular antipodal graphs
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Figure 2: Some examples of distance regular antipodal covers.

of diameter two. So we may assume d > 2. Let C(u) and C(v) be components of G,
corresponding to adjacent vertices v and v of its antipodal quotient. If there is no other
vertex beside v and v in C(u) UC(v) we are finished, otherwise we may assume that there
exists v’ in C(u) different from u. A shortest path between u’ and v must be shorter than
d (since v’ ¢ C(v)) and longer than d — 2 (since otherwise there would exist a path of
length less than d between u and u'). Thus dist(u',v) = d — 1, and v is adjacent to just
one vertex in C(u) and at distance d — 1 > 1 from all other vertices in S(u). By symmetry
u has just one neighbour in C(v). Since b;_; > 0, the shortest path between v and u' can
be extended to geodesic of length d. But this means that u’ has also exactly one neighbour
in C(v). By symmetry we can now conclude that each vertex from one fibre of u and v

has exactly one neighbour in another fibre, what we wanted to prove. O

Note that we used in this proof just the facts that G is antipodal, connected and that
by_q1(u,v) > 0 for any vertex v and v € S;_; (u).



3. PARAMETERS OF DISTANCE REGULAR ANTIPODAL COVERS

In order to gain more insight into the structure of the distance regular antipodal covers
of distance regular graphs let us first see what we can say about their parameters. The
following theorem and corollary are due to Gardiner [Gal, we are presenting our proof of

this theorem.

3.1 THEOREM. Let G be a distance regular graph of diameter d with parameters a;,
b,
parameters A;, B;, C;, K;. Then holds:

(i) If a vertex u € V(H) is at distance i < |2 | from v, then it is at distance D — i from

¢;, k; and H a distance regular antipodal r-cover of G with diameter D > 2 and

all other vertices in the fibre of v.
(ii) For alluw € V(H) and i < | 2|

Sp_i(u) = U Sp(v).

vES;(u)

(iii) d=|2| andfor0<i<d
a;=A;=Ap_;, b;=B;=Cp_;;, ¢;=C;=Bp_;.

(iv) For D = 2d we have ay = Ay, ¢ = B;+ Cy, (r—1)Cy; = B, and for D = 2d + 1 we
haVe Cd = Cd = Bd-l-].’ (’r - 1)Cd+1 == Bd
(v) r<k.

Proof. (i) Let u € V(H), Sp(u) = {uy,...,u,} and v € S;(u) for i < [£]. Then

there exists a geodesic P;: u = ¢;(0),¢,(1),...,¢,() = v between u and v. Between two
D
2
the shortest path between any pair of vertices from the fibres of u and v. For the same

fibres there are either no edges or a matching and 7 < [ J, so this geodesic has to be
reason, there exists, a geodesic P;: u; = ¢;(0),¢;(1),...,q;(7), for 2 < j < r, with vertices
q5(8),--.,q,(s) from the same fibre as ¢;(s), for s = 0,...,i. (Intuitively we can say that
the paths P,, ..., P. are parallel with P, when we observe them in the antipodal partition.)
Because ¢;(0) € Sp(u) and @ < | 2| we have [P, N P;| <1. If |[P,N P;| =1, then D = 24,
v = P; N P; and dist(g (¢ — 1), ¢;(i — 1)) = 2 which gives us D = 2. Contradiction! Thus
P NP = (). For the same reason the paths Py,..., P, are all pairwise disjoint. Note
that then Sp(v) = {g(7),-..,¢,(i)}. Now suppose that ¢;(i) € Sp_;(u), for t < i. Since
Bp_4y...,Bp_1 > 0 there would exist a path between some vertices of fibres corresponding
to u and v with length less then i. Contradiction! Since a path of length 7 cannot have
one end in Sp(u) and another end in Sp,_,(u), for ¢ > i, hence ¢;(i) € Sp_;(u). Finally
we conclude that Sp(v) C Sp_;(u).
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Statement (ii) is an easy consequence of statement (i) and the fact that one of the
paths P; defined above induces all other pairwise disjoint paths. Statement (iii) follows

quickly from (ii). For (iv) we use (ii) and Lemma 2.1 to get in the case D = 2d:
KiCy=Kq 1By 1, KiBy=Kz.,1Cqyy, Kg1(r—1)=K4,, By 1=0Cqy,
and in the case D = 2d + 1:
K= -1)Ky Kg1Chpq = KiBy.
For (v) use (iv), By<k—1land C4,Cy,; > 1. O

Statement (ii) gives us an idea how to draw the distance partition of an antipodal cover
over the corresponding distance partition of its antipodal quotient and why we say that a

distance regular antipodal cover folds to its antipodal quotient (see Figure 3).

Figure 3: The distance partition of a distance regular antipodal cover, with even
diameter (left) and odd diameter (right).

3.2 COROLLARY. H has the following intersection array:
(i) for D = 2d
Cq
{bo, b].’ ceey bd—l’ (T - 1)Cd/’f‘, Cd—].’ e ey Cl; Cl, e ey Cd—l’ 7’ bd—l’ “eey b].’ bo}
(Since elements of the intersection array are integers, r|c;. By the monotonicity of
parameters B; and C; we have also ¢;_; < % and (1 — L)cg < by_,),
(ii) for D =2d +1
{bgs b1y e vsbg_1, (r— 1)t Cqy CgtsevyC1iCryenvyCa1sCasbsDg_1s---301,00}
for some integer t satisfying the conditions t(r — 1) < min(b;_,,a,) and c; < t.

Proof. Use (iii) and (iv) from previous theorem. O
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The following corollary can be again found in Gardiner [Gal.

3.3 COROLLARY. If H is a distance regular antipodal graph, then H has a distance
regular antipodal cover only if H is either a cycle, a complete graph or a complete bipartite

graph.

Proof. Let denote by D the diameter of H. Assume further that L is a distance regular
antipodal R-cover of H and G the antipodal quotient of H. Let a,(X), b,(X), ¢;(X) be
the intersection numbers of a distance regular graph X. For D > 2 the graph H is a cover
of G (Lemma 2.3). In this case we have by Lemma 3.1 (iii) that by_;(H) = ¢;(G) = 1.
Now we use the monotonicity of parameters b,(L) (Lemma 2.1 (c)) and Corollary 3.2. In

the case when the diameter of L is even we get:

cp(H)
R

L= bp_1(L) = by (H) 2 bp(L) = (R- 1) 2 > R -1

Thus R = 2 and ¢p(H) = 2. Since H is antipodal we have by(H) = c¢p(H) = 2, so the
valency of H is two and H is a cycle.

In the case when the diameter of L is odd we get:
1=bp 4(L)=bp_1(H) >bp(L) = (R-1)t(H) > R—1

Thus R = 2 and ¢(H) = 1. Now by monotonicity of ¢;(L) we have 1 = ¢p(H) = ... =
¢, (H). But then by(H) = cp(H) = 1. Contradiction!

It remains to consider the case when D = 2. Since H is antipodal it is a complete
multipartite graph, i.e. the complement of m copies of K,,, where m,n > 2. Then we have
bo(H) =cy(H) = (m —1)n and b;(H) =n — 1.

In the case when the diameter of L is four we get by Lemma 3.1 (iv) and (iii) that
ao(L) = ay(H) = 0 and a,(L) = ay(H) = (m — 2)n. But we have also 2a,(L) > a,(L),

since for any geodesic path u,, u;, uy, u5 in the distance regular graph L holds
S(uy) N S(ug) C [52 (up) N S(“z)} U [52 (uy) N S(U?,)}

Therefore a4 (L) = 0, what give us m = 2, i.e. H is a complete bipartite graph.
If the diameter of L is five, we have n — 1 = b,(L) > by(L) = (m — 1)n > n.

Contradiction! O

From the above theorems we can derive some nonexistence results for distance regular

antipodal covers of strongly regular graphs.
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3.4 COROLLARY. Let G be a strongly regular graph with parameters (n,k,\, ), i.e.
intersection array {k,k — X — 1;1, u}. Then
n—1

(i) if k > |25%| then G does not have a distance regular antipodal cover of diameter

five,
(i) if k > VS:%PJ then G' does not have a distance regular antipodal r-cover of diameter

four.

Proof. (i) Suppose H is a distance regular antipodal cover of G of diameter five. Then H
has intersection array {k,k — A —1,(r — 1)t, pu, 1;1, pu,t, k — XA — 1, k}. Lemma 2.1 yields

k(k—XA—1)

Sl T

ie.en—k—1>k.

(ii) A distance regular antipodal cover H of G having diameter four would have inter-
section array {k,k—A—1,(r— V)p/r,1;1,u/r,k—X—1,k}. Thus k—X—1> (r—1)u/r,
so that r(n—1) > (2r — 1)k. O
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4. EIGENVALUES AND EQUITABLE PARTITIONS

Now we will study the relation between the spectrum of a distance regular graph G and
its distance regular antipodal r-cover H.

The adjacency matrix A = A(G) of a graph G with vertex set {1,...,n} is the n x n
matrix with ¢j-entry equal to 1 if vertex ¢ is adjacent to vertex j and 0 otherwise. Since
A is loopless, A has diagonal entries zero, and as A is symmetric matrix all its eigenvalues
are real. We will use I to denote an identity matrix, J to denote a square matrix with all
entries equal to one and j to denote the column vector with all entries equal to one. Since
A is symmetric all its eigenvalues are real. They will be referred to as the eigenvalues of G.
By an easy induction argument we get the fundamental property of the adjacency matrix:
the number of walks in G from the vertex i to the vertex j with length k is equal to the
ij-entry of the matrix A¥. Also some other properties of a graph can be expressed very

simple in algebraic way, for example regularity of a graph:

4.1 LEMMA. Let G be a connected graph. Then G is k-regular if and only if k is its

eigenvalue with multiplicity one and eigenvector j.

Proof. For the adjacency matrix A of the graph G the equation Ar = fx is equivalent
to ij. z; = bz;, so G is k-regular if and only if k£ is an eigenvalue with eigenvector j.

Furthermore for any eigenvector x of the eigenvalue k£ holds:
klz;| < \Zxﬂ < Z‘xj‘ < k|-
jrvi jrvi
Therefore z; = x; for all adjacent vertices v; and v;. Since G is connected z is scalar

multiple of vector of all ones and multiplicity of the eigenvalue £ is really one. [

Note that from this proof hence also that for any eigenvalue 6 of k-regular graph holds
|0| < k, with other words k is the spectral radius of A(G).

4.2 THEOREM. A connected graph G of diameter d on n vertices has at least d + 1

and at most n distinct eigenvalues.

Proof. Since the matrices A° = I, A, A2, ..., A? are all nonzero and linearly independent
as elements of the vector space formed by the space of n x n matrices over the reals, A
satisfies no polynomial of degree less than d + 1. But if G has e distinct eigenvalues, then
A satisfies the polynomial of degree e with this eigenvalues as roots. Therefore d < e. It

is evident that any n x n matrix A(G) has at most n eigenvalues. [J

The rank of n x n matrix J is one, thus zero is its eigenvalue with multiplicity n — 1.
Since A(K,,) = J — I, we have (A — 0I)x = (J — (14 0)I)x. Therefore K, has for its

14



eigenvalues —1 with multiplicity n — 1 and by Lemma 4.1 also its valency n — 1 with
multiplicity one.

If G is a graph of diameter d, then we define the ¢-th distance matrix A, to be the
adjacency matrix of G;. We set Ay =Iand A, =0forr >dorr <0and A= A4,. Now
the uv-entry of A;A; is equal to the number of vertices at distance ¢ from u and j from v.

This provides us with an equivalent definition of distance regularity:

4.3 THEOREM. A connected graph G of diameter d is distance regular if and only if

there are numbers a,;, b; and c; such that

If G is a distance regular graph, then A; = v;,(A) for some polynomial v,(x) of degree i,
for0<:<d+1. O

Using this identity for a distance regular graph we find that A;A; is a linear combination
of distance matrices which are linearly independent. The coefficient at A, is p;;(r). This
means that in order to check if some graph is distance regular it is enough to verify if for
any vertex u and v € S;(u) the numbers [S; ;(u) N S(v)| and |S;_;(u) N S(v)| (i.e., the
members of the intersection array) are independent of choice of u and v.

The sequence of polynomials v, (z) is determined with v_, () = 0, vo(z) = 1, vy (x) = =

and recurrence relation

Ciy1Vig1(®) = (x — a;)vy(w) — b;_yv;_(z), 1=0,1,...,d.

In this sense distance regular graphs are combinatorial representation of orthogonal poly-
nomials (more about this can be found in [God2]).

Damerell [D] proved the following:

4.4 COROLLARY. If G is a distance regular graph of diameter d, then it has precisely

d + 1 distinct eigenvalues, namely zeros of vy (x).

Proof. Since v;,,(A) = Ay, = 0, the minimal polynomial of A divides a polynomial of
degree d+1, and so A has at most d+ 1 eigenvalues. But because of Theorem 4.2 we know

that G has then exactly d + 1 eigenvalues. O

The converse does not hold in general, but it is true for strongly regular graphs:
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4.5 THEOREM. A graph G on n vertices is strongly regular if and only if its adjacency

matrix A satisfies
A2 =kI4+ XA+ pu(J—I1—A) and AJ=kJ

for some integers k, A\ and . Its eigenvalues then are 0, = k with multiplicity one and

02,3=%[/\—ui\/(/\—u)2+4(k—u) :

with multiplicities

(n—1)05 + k
05 — 0,

They satisty k > 05 > 0> 03 > —k.

My = and mg=n—1—m,.

Proof. The first part of the statement follows from Lemma 4.3. Using the first part of
the statement and Corollary 4.4 we get the above formulas for eigenvalues of A. Since
k is the spectral radius of A(G) (Lemma 4.1) we can without loss of generality assume
0, >0, > 05 > —0,. Because 0,05 = p — k < 0 we know also 6, > 0 > 65. By Lemma 4.1

we get similarly as in the proof of Corollary 4.15 the multiplicities of these eigenvalues. O

Thus the eigenvalues and their multiplicities can be calculated from the parameters

of the strongly regular graph. Conversely the eigenvalues determine all the parameters:
k=91, )\:91+92+03+9293, ,U,:01+92937
so we can use the eigenvalues for a classification of strongly regular graphs. As the multi-

plicities of the eigenvalues must be integer, the above lemma gives us the following ratio-

nality conditions for strongly regular graphs.

4.6 COROLLARY. Ifthere exists a strongly regular graph with parameters (n, k, A, ),
then one (or both) of the following holds:

(a) k=2pu,n=4p+1and A=p—1,

(b) (A —p)?+4(k — p) = s?, where s is an integer and s divides (n — 1)(u — \) — 2k.

Proof. If the expression (A— p)2 —4(k — p) is not a perfect square, then (n—1)(u—\) = 2k
(i.e. my = mgy) what gives us n =1+ uz—_k)\ Since n > 14k we get 0 < u— A < 2 implying
i — A = 1. Therefore k =2p and n =4p+ 1. O

Strongly regular graphs with parameters (4u + 1,2, p — 1, u) are called conference
graphs. They are the only strongly regular graphs with m, = mj, and also the only
ones which could have irrational eigenvalues. They have the same parameters as their

complement.

The next lemma gives us a connection between eigenvectors of G and G, which has

important consequence, as we will see later (Theorem 4.11).

16



4.7 LEMMA. Let G be a distance regular graph and 6 an eigenvalue with eigenvector

x. Then v;(0) is an eigenvalue of G; with eigenvector .
Proof. Az = 6z implies A"z = 6"z and A,z = v;(A)x = v;(0)z. O

We generalized antipodal partitions to covering partitions. Now we generalize these par-
titions to equitable partitions. These are partitions 7 = {Cy,...,C,} of V(G) with the
following property: for all ¢ and j the number ¢;; of neighbours which a vertex in C; has
in the cell C; is independent of the choice of the vertex C;. This give rise to a quotient
graph G/m, which is a directed multigraph with cells as vertices and ¢;; arcs going from
C; to C;. So the adjacency matrix A(G/7) is a s X s matrix with ij-entry equal to c;;.
The characteristic matrix P = P(w) of a partition 7 = {C}, ..., C,} of a set of n elements
is the n x s matrix with columns formed by the characteristic vectors of the elements of 7

i.e. 17-entry of P is 0 or 1 according to as % is contained in C'; or not).
g i

4.8 LEMMA. A partition © of V(G) with the characteristic matrix P is equitable if
and only if there exists a s X s matrix B such that A(G)P = PB. If « is equitable then
B=A(G/x). O

As we will see the quotient graph will often inherit some properties of G. So we actually
use quotienting to present this properties in simpler graphs. Here is one important result
of this kind due to Haynsworth [Hal:

4.9 COROLLARY. Let G be a graph with an equitable partition m = {Cy,...,Cy},
and let 6 be an eigenvalue of G/m with eigenvector z, then 6 is also an eigenvalue of G
(with multiplicity at least as big as its multiplicity in G/7 ), and x extends to an eigenvector
of G which is constant on cells of w. If T is an eigenvalue of G but not of G/x then the
sum of coordinates of any eigenvector of G corresponding to the eigenvalue T equals zero

on each cell C;.

Proof. For the first part we use Lemma 4.8 to get that A(G/m)z = 0x implies APx = §Pz.
For the second part we note that A is symmetric, and that matrices B and B! have

the same eigenvalues. Then we get similarly as in the first part that Ay = 6y implies
Bt(Pty) = 0(Pty). So if 6 is not an eigenvalue of A(G/m), then must hold Pty =0. O

After developing this machinery, it is time to apply it. Let G be a distance regular
graph of diameter d and u a vertex of G. Then the distance partition corresponding to
a vertex u is an equitable partition and gives rise to a quite simple graph (see Figure 4)

which inherits all the eigenvalues of G.
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Figure 4: The quotient graph corresponding to the distance partition

The quotient graph G/m, does not depend on choice of vertex u, since G is distance regular,

so we can omit index u. It has just d + 1 vertices, so by Theorem 4.2 its adjacency matrix

0 b,
Cq aq b]_ 0
cy a b
A(G/ﬂ') _ 2 2 2
0 Cg1 Og_1 by
\ Cq aq /

which is determined by the intersection array of GG, has exactly d + 1 distinct eigenvalues
and they are precisely all the eigenvalues of A(G). The vector v = (vy(6), .. .,Ud(H))T
is a left eigenvector of this matrix corresponding to the eigenvalue 6. Similarly a vector
u = (ug(0),...,uy(0))T defined with u_;(x) = 0, uy(z) = 1, u,(z) = z/k and recurrence

relation

ru; (7)) = cu;_q () + azu;(T) — bu; 4 (), 1=0,1,...,d

is a right eigenvector of this matrix, corresponding to the eigenvalue #. There is the
following relation between coordinates of vectors u and v: u,;(z)k; = v;(x). The sequence
(ug(8),--.,uq4(0)) is fundamental for the study of distance regular graphs and is called
sequence of cosines corresponding to #. Using the Sturm’s theorem (see for example [Vi])

for the sequence w;(z) = by ...bu;(z) we get:

4.10 THEOREM. Let 6, > ... > 0, be the eigenvalues of a distance regular graph. The

sequence of cosines corresponding to the i-th eigenvalue 0; has precisely 4 sign changes. [

If 6 is an integer, then u,(f) is also, so it is very easy to find all the integer eigenvalues
(and also the integer parts of noninteger eigenvalues).

Let us now return to distance regular antipodal covers.
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4.11 THEOREM. Let G be a distance regular graph and H a distance regular antipodal
r-cover of G. Then every eigenvalue 6 of G is also an eigenvalue of H with the same

multiplicity.

Proof. From Corollary 4.9 we know that for any eigenvalue of G its multiplicity in G is at
most as big as its multiplicity in H. Let us now prove also the opposite inequality. Denote
by D the diameter of the graph H and with n the number of vertices of the graph G. Then
the graph H, consists of n copies of K., corresponding to the fibres of H. The eigenvalues
of a disconnected graph are just the eigenvalues of its components and their multiplicities
are sums of the corresponding multiplicities in each component. Therefore Hp has for
eigenvalues » — 1 with multiplicity n and —1 with multiplicity nr — n. The eigenvectors
corresponding to eigenvalue r — 1 are constant on fibres and those corresponding to —1
sum to zero on fibres.

Take 6 to be an eigenvalue of H which is also an eigenvalue of G. An eigenvector
of G corresponding to € can be extended to an eigenvector of H which is constant on
fibres. From Lemma 4.7 we know that the eigenvectors of H are also the eigenvectors
of Hp, therefore using again Lemma 4.7 we get v () = 7 — 1. So we conclude that all
the eigenvectors of H corresponding to # are constant on fibres and therefore give rise to

eigenvectors of G' corresponding to 6. O

In the last proof we have seen nice combining of the properties of the antipodal
partition of H and the quotient graph of H. Theorem 4.11 can be derived also as a

consequence of the following theorem of Biggs [B2]:

4.12 THEOREM. The multiplicity of an eigenvalue 6 of a distance regular graph G

with diameter d and n vertices is equal to

n

b o ksu(6)2

Now we can finally state the main theorem of this chapter which is due to Biggs and
Gardiner [BG]:

4.13 THEOREM. Let H be a distance regular antipodal r-cover with diameter D of the
distance regular graph G with diameter d and parameters a,;, b;, c;. The D —d eigenvalues

of H which are not eigenvalues of G are in the case when D = 2d the eigenvalues of the
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d X d matrix

\ 0 Cig—2 Qg—2 bd—2)

(Thus, these eigenvalues do not depend on r and are the roots of uy(6) = 0. Their

multiplicities are proportional to r — 1.) and in the case when D = 2d + 1 the eigenvalues

of the (d+ 1) x (d+ 1) matrix

0 Ci—1 Qg1 by

\ Cq ad—rt/

(Thus, these eigenvalues depend only on rt and are the roots of cyuy_1(0) + ug(9)(ag —
rt—0)=0.) If 6, > 6, >...> 0 are the eigenvalues of H and §, > &, > ... > &, are

the eigenvalues of G, then

50:907 51:92a <y £d:92d

i.e. the eigenvalues of G interlace the ‘new’ eigenvalues of H.

Proof. We know that 6, > 6; > ... > 0p are exactly the eigenvalues of the adjacency

matrix of the distance partition quotient of H, which is in the ‘even diameter’ case (i.e.
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when D = 2d) equal to:

(0 by O 0 0
¢, a; b 0
0 co ayg by
0
Ci—z Qg—2 by
0 g1 g1 bgy
Fok—cp (I—-3)eq
ba—1 Gg—1 cg—1 0 0
by g2 Cq-z 0
0 bi_z @43 Cq_3
0 : :
0 0 by a; ¢
\ 0 0 ... 0 b 0)
Let m; > ... > 7p_, be the eigenvalues of H which are not the eigenvalues of G. By

Corollary 4.9 a right eigenvector corresponding to 7; sums to zero on fibres, so by Theorem
3.1 the corresponding right eigenvector of A(H/x) has in the ‘even diameter’ case the
following form:

—Ug —U
u= (uo,ul,...,ud_l,O,T_ D r—ol

).

From the symmetry of A(H/m) and u it is now easy to conclude that 7; is an eigenvalue of

the first matrix from the statement. But this matrix is a square matrix of order d = D —d,
so it determines all the ‘new’ eigenvalues. By Theorem 4.4 these eigenvalues are exactly
the roots of uy(f) = 0. Similarly we prove also the corresponding parts of the statement
for the ‘odd diameter’ case (i.e. when D = 2d + 1).

Let us return to the ‘even diameter’ case. The first matrix in the statement is the
adjacency matrix of the quotient graph of G (corresponding to its distance partition)
with deleted the last vertex. Then by Interlacing theorem [Godl]| the ‘new’ eigenvalues
Ty,...,Tp_gq interlace the eigenvalues of G, i.e. 7 =0,, 79 =05,...,7, =09, _1,..., 75 =
O24—1 or & = 0, &1 = b, ..., §g = Oa4.

To prove that ‘new’ eigenvalues of H interlace the eigenvalues of G also in the ’odd
diameter’ case, we will use Theorem 4.10 (which could have been used also in the ‘even
diameter’ case). By Corollary 4.9 the eigenvalue ¢, of G is also an eigenvalue of H. By
the some Corollary an eigenvector of G, corresponding to ¢;, yields the eigenvector of

H constant on fibres and which corresponds to the eigenvalue &;. Let m be the distance
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partition of H. Then by Theorem 3.1 the corresponding right eigenvector of A(H /) has

the following form:

U= (Ug, Ugy .oy Ug, Ug, Ug_1,- -, Ug)
Therefore by Theorem 4.10 we get &, = 0,,. O
The following corollary can be found in van Bon and Brouwer [BB].

4.14 COROLLARY. In particular, if d = 2 and D = 4 the two new eigenvalues  are
the two roots of 0% — a0 — k = 0 and they occur with multiplicity

_(r=1n _ n(r-1)
m(9)— 2+Cl,1% - 1_95/94

Consequently, either a; = 0 or a? + 4k is a square and these eigenvalues are integral. [

4.15 COROLLARY. The only Conference graph having a distance regular antipodal

cover is the pentagon.

Proof. Suppose G is a strongly regular graph with parameters (4p + 1,2p, 4 — 1, u). For
1 =1 G is the pentagon which has the dodecagon as its distance regular antipodal cover.
Thus we can assume p > 1. Suppose G has a distance regular antipodal cover of diameter
four. As a; = A = u—1 > 0, by Corollary 4.14 we have a2 + 4k = m? for some integer m.
Thus (p—1)2+8u= (p+3)2—-8=m?2, andso (u+3+m)(p+3—m)=8. But u>1,
so that pu+3+m =8 and u+ 3 —m = 1. Therefore 2y = 3. Contradiction!

Now suppose that G' has a distance regular antipodal cover H of diameter five. Then

the intersection array of H is

{2/1'3 Iy t(T’ - 1)3 s ]-’ 13 My ta My 2:“}

for some integer ¢. By Lemma 2.1 we get t = p and r = 2, which gives us a,(H) = a3(H) =
0. But as ay(H) = pp — 1 # 0 there must be triangles on edges between S,(u) and S3(u),
and these triangles have an edge within S,(u) or within S;(u). Contradiction! 0

Therefore we will be looking just for distance regular antipodal covers of nontrivial
strongly regular graphs which are not conference graphs. But then the expression (A —
©)? — 4(k — p) is a perfect square and 6,, 65 are rational. Furthermore since 6, and 65 are
algebraic integers, they are integers. Now it has become really clear how we can classify

these strongly regular graphs using eigenvalues.
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4.16 COROLLARY (Schade). In particular, if d =2 and D =5 the three new eigen-

values o, # and ~y are the three roots of
03+ (cy + 7t —k —ay)0% + (ark + ¢y — k — kcy — a7t)0 + k(k — ¢y — rt) = 0.

They cannot all have the same multiplicity, and at least one of these eigenvalues is an

integer.

Proof. If the multiplicities of o, # and «y are not equal, then at least one of these eigenvalues
is rational. But since these eigenvalues are roots of a monic polynomial with integer
coefficients, any rational eigenvalue has to be an integer. So it suffices to prove that the

eigenvalues «, 3 and 7 cannot all have the same multiplicity. Suppose on the contrary that
n(r-1)
3

is the number of vertices of G. Since tr(A(G)) = 0 =tr(A(H)) the coefficient of #2 in the

above polynomial is:

they have the same multiplicity, say m. By Theorem 4.10 we have m = , Where n
cgtrt—k—a;=—(a+8+7)=0,

and therefore 7t = k + a; — ¢o. From tr(A2(GQ))r = nkr = tr(A%(H)) follows m(a? + 32 +

%) = kn(r — 1). Therefore the coefficient of § in the above polynomial is equal to
a1k +cy —k —key —ay(k+aq —cy)
and on the other hand also equal to
aff + By +ya = —%(a2 +8%+7%) = —gk,

This gives us cy(k — 1 —a,) + a? = &. Using k = a; + b; + 1 we get the equation

ay(ay — )+ (k= 1—ay)(e, — 2) -

= 0.
2 2

DN | =

Since ¢, > 1 the left hand side is positive whenever a,; is positive. Thus a; = 0 and

therefore
(k—1)(2¢y — 1) =1.

This is only possible for £k =2, ¢, =1, so rt = 1. But then r = 1. Contradiction! O

Before we finish this chapter let us mention the Krein condition on the intersection

numbers of distance regular graphs discovered by Scott [Sc] and the absolute bound.
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4.17 THEOREM (Krein condition). Let G be a distance regular graph with n ver-
tices, diameter d and eigenvalues 0, > 0, > ... > 0, with multiplicities my, ..., mg. Let
the polynomials v;(x) and the numbers k; be as above. Then the Krein parameters (also

called dual intersection numbers)

d
qij(h) _ minmj Z Ua(ei)va(ej)va(eh)

are nonnegative for all i,j5,h € {0,...,d}. O

4.18 THEOREM (Absolute bound). Let G be a distance regular graph of diameter

d. Then the multiplicities my, ..., m, of its eigenvalues satisfy
1 . . .
sm.(m;, +1) if 1=

zmhg{”“ )
i3 ()0 Tt i

where the g;;(h) are the Krein parameters. U
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5. GEOMETRY OF DISTANCE REGULAR ANTIPODAL COVERS

Van Bon and Brouwer [BB] found strong necessary conditions for the existence of distance
regular antipodal covers of distance regular graphs. Using them they ruled out most of the
‘feasible’ parameters of distance regular antipodal covers of the classical distance regular
graphs. But in general we still do not know much about existence of distance regular
antipodal covers. We will give detailed proofs of their two main theorems and show some
examples of their use.

For vertices u and v of G we denote by C(u,v) the union of all geodesics between u

and v in G.

5.1 THEOREM. Let G be a distance regular graph of diameter d > 2 which has a
distance regular antipodal r-cover H of diameter 2d. Then for any two vertices u and v
of G at distance d, the subgraph C(u,v)\{u,v} is the disjoint union of r subgraphs each
having the same number of vertices, and there are no edges joining vertices from different

subgraphs.

Proof. Let p: V(H) — V(G) be a covering map, u; some point in p~1(u) and p~t(v) =
{v4,...,v,}. Denote by C; the union of geodesics in H between u,; and v; for 1 <7 < r, and
let be C = U,;(C;\{uq,v;}). Then p|s : C — C(u,v) is an isomorphism. The restriction
of the map p is injective since the distance between any pair of points in C' is less then
2d and two vertices of H have the same image under p if and only if they are at distance
of the diameter of H. For the same reason, there are no edges between the subgraphs
C;\{uq,u;}, for s = 1,...,r. For each geodesic between u and v there exists by Lemma
2.3 the unique geodesic between u,; and the fibre of v. Thus the restriction of the map p
is also surjective. It remains to show that subgraphs C;\{u,,v;} have the same size. Since
H is a distance regular graph, the numbers |S,(u,) N S;_;(v;)|, fort =1,...,d—1, do not
depend on i. But the number of vertices in C;\{u, v} is equal to the sum of these numbers.
|

5.2 THEOREM. Let G be a distance regular graph of diameter d > 2 which has a
distance regular antipodal r-cover H of diameter 2d 4+ 1. Then for any two vertices u and
v of G at distance d and E = {v} U (S(v) N S4(v)), the union of C(u,w)\{u,w} (w € E)
can be partitioned into r nonempty subgraphs and all edges joining vertices from different

subgraphs are in S(u).

Proof. Again let p : V(H) — V(G) be a covering map, u, some point in p~'(u) and
p~t(v) = {vy,...,v,.}. By Theorem 3.1 we can assume that disty(u;,v;) = d and

distg(uy,v;) = d+ 1 for i = 2,...,7. Each of the vertices v,,...,v, has Cy , neigh-
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bours in S;(u;) and these neighbours are all distinct, since H is an antipodal graph with
diameter greater than two. Because p is an adjacency preserving map and S;(u,) does not
contain any pair of antipodal vertices, these neighbours together with the neighbours of v;
in S;(u,) are mapped by p injectively to the set E\{v}. But by Corollary 3.2 these sets
have the same number (r—1)C,,, +A; = a, of elements, so the restriction of p to the first
set is a bijection between them. Denote by C; the union of the geodesics between u,; and
the vertices from {v; } U (S(v;) N S;(uy)), by C; the union of the geodesics (in H) between
uy, and v; for 2 < ¢ < r and finally by C the union of sets C;\p~!(F) where i = 1,...,7.

Then as in previous proof we obtain that

plo: C = | (Clu,w)\{u,w})

weE
is an isomorphism, subgraphs C N p(C;) for i = 1,...,r are disjoint and all edges joining

vertices from different subgraphs are in S(u). O

5.3 COROLLARY. Let u be some vertex of G with the diameter d > 2, and i a fixed
element from the set {1,...,d—1}. If for any two adjacent vertices v and w in S (u) there
is a vertex in Sp_,; (u) N S;(v)NS;(w), then G does not have any distance regular antipodal

covers of diameter 2d +1. O

Let us now apply these results. The graph with vertices as g-subsets of an p-set with
two g-subsets joined by an edge if and only if they intersect in exactly ¢ — 1 elements is
called Johnson graph and is denoted by J(p, q). We assume that g is at least two. (When
g = 2 Johnson graph is the line graph of complete graph with p vertices.) Since graphs
J(p,q) and J(p,p — q) are isomorphic we can assume also ¢ < [gJ It is not difficult to
prove that for any two g-subsets A and B holds dist ;(, ,)(A, B) = ¢ — [AN B|. From this
easyly follows that J(p, q) is a distance transitive graph of diameter ¢ and with parameters
b, =(p—q—1i)(g—1),c; =142 fori =0,1,...,q. Let us denote elements of the p-set by
1,2,...,p. For some elements y and z and a subset X of {1,...,p} we define X, to be the
subset (X\{y})Uz. Letbe A={1,...,q} and B={p—q+1,...,p},s0 A€ S, (B). Now

for 7;177;2 S q and j17j2 Z b— Q+ 17 where (i17j1) 7é (?:2aj2)7 holds A’l:]_,j]_’Aig,jQ € Sq—l(B)'
If 4y = 15 or j; = jy, then A; ; and A, ; are adjacent. Otherwise A4; ; is a common
neighbour of 4; ., A, ;, and A. Therefore S(A)NS,_;(B) is connected and by Theorem

5.1 J(p, q) has no distance regular antipodal covers of even diameter.

The graph J(2q, q) is antipodal and has therefore by Theorem 3.3 no distance regular
antipodal cover, so let us assume that p # 2¢, i.e. a, # 0. Thus for i < g and j €
{g+1,...,p—q} we have A,;; € S (B)US(A). But (4;;nA)u{1} € S,_;(B)NS(A)NS(A;;),

so by Corollary 5.3 J(p, q) has also no distance regular antipodal covers of odd diameter.
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Now we will show that two important infinite families of strongly regular graphs
coming from certain finite geometries cannot have distance regular antipodal covers. This
is joint work with Tilla Schade.

A geometric 1-design is an incidence structure D = (P, L), where P is a set of points
and L is a set of lines, together with an incidence relation such that

(i) every point is on exactly 7 > 2 lines,
(ii) every line contains exactly s > 2 points,
(iii) two distinct points lie on at most one common line.

The line graph of a geometric 1-design D has the lines of D as vertices, two of them
being adjacent whenever they have a point in common; obviously, two distinct lines cannot
have more than one point in common. We will look at two special classes of geometric
1-designs which have strongly regular line graphs. For more informations about finite

geometries see [BJL].

A 2-(v,s,1) design is a geometric 1-design with the property that any two points are
on a unique line, v is the number of all points and s is the number of points on a line
(for standard definition see Appendix A). It can be easily shown that the line graph of a
non-square 2-(v, s, 1) design D, is strongly regular and has parameters

v(v—1) v—8 v—1

= k: =
n S a, p—

, , -2 —1)2 d = s>
s(s—1) s—1 +(s—1)7 and ey =s

As these designs are also called Steiner systems, their line graphs are known as Steiner
graphs (for s = 2 also triangular graphs). (If D is square design, then its line graph is a
complete graph.)

5.4 COROLLARY. Steiner graphs do not admit any distance regular antipodal covers.

Proof. Suppose G is the line graph of a 2-(v, s,1) design D and H is a distance regular
antipodal cover of GG. Let us first consider the case when the diameter of H is four. Let
A be some line of D and B € Sy5(A), i.e. ANB = 0. For a,b € A and ¢,d € B, where
(a,c) # (b,d), let C be the line containing the pair {a,c} and D the line containing the
pair {b,d}. If a = b or ¢ = d, then C and D are adjacent. Otherwise the line E determined
by the pair {b, ¢} is a common neighbour of C' and D and lies in S(A) N.S(B). So we have
shown that S(A) N S(B) is connected and thus by Theorem 5.1 we get a contradiction.
Now consider the case when the diameter of H is five. Suppose that there exist lines
B and C in S5(A) such that [BN C| = 1. Then the line determined by B N C and some
point in A is a common neighbour of B and C in S;(A). By Corollary 5.3 this gives us a

contradiction. If there is no such B and C, then a, = 0 and v = s2. But this means that
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the distance regular graph G is antipodal (i.e., the complement of s + 1 copies of K ), so

by Theorem 3.3 it cannot have any distance regular antipodal covers. O

A transversal design T D(s,v) is a geometric 1-design with line size s having v points
which can be partitioned into s groups of v/s points each such that two distinct points are
on a line if and only if they are in distinct groups (for standard definition see Appendix
B). For proof that s < v 4+ 1 see Appendix B. The line graph of transversal design is a
complete graph if and only if the equality holds. Again, it is not difficult to see that the

line graph of a transversal design T'D(s, v) is strongly regular for s < v and has parameters
n=v> k=sv—-1), a=v-2+(s—1)(s—2) and c,=s5(s—1).
The line graphs of these transversal designs are called Latin square graphs because a

TD(s,v) is equivalent to s — 2 mutually orthogonal Latin squares of order v (for s = 2

they are also called Lattice graphs).

Figure 5: Example of the line graph of T'D(s,v) for v =3 and s = 3.
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5.5 COROLLARY. Latin square graphs do not admit any distance regular antipodal
covers, except for v = 2 and s = 2, which is the quadrangle with the eight-cycle as its

distance regular antipodal cover.

Proof. Suppose that G is the line graph of a TD(s,v) and H a distance regular antipodal
cover of G. For s = 2 we have G = K, x K,,. Choose a vertex u of G. Then S, (u) consists
of two disjoint copies of K,,_; and S,(u) is isomorphic to K, _; x K, _;. Any two adjacent
vertices in S,(u) lie in the same copy of K, _; and thus there is always a vertex in S (u)
which is adjacent to all the vertices of this copy. Therefore by Corollary 5.3 the diameter
of H has to be even. If the expression a? + 4k = (v + 2)? — 8 is a square of some integer
m, we have
w+2)?2-m?=@w+2+m)(v+2—-m)=38

Since the sum of the above factors of eight is even, it is equal to 2 + 4 = 6. This gives us
v = 1, which is not possible. So by Corollary 4.14 we get a; = 0 and thus v = 2. Therefore
G is the quadrangle which has the eight-cycle as a distance regular antipodal cover.

It remains to consider the case s > 3. Let A and B be two disjoint lines of the
TD(s,v),i.e. B € Sy(A). Let C and D be any two common neighbours of A and B, and
let

a=ANC, b=AND, c¢=BNC, d=BnND.

If a=0or c=d, then C' and D have a common point and thus are adjacent. Otherwise
we want to show that C' and D lie in the same connected component of S(A) N S(B).
Suppose that at least one of the pairs {a,d} and {b,c} is not contained in some group of
the T'D(s,v). Then that pair determines a line which is a common neighbour of A, B, C
and D. Otherwise a and d lie in the same group and b and c lie in the same group. As the
number of groups is s > 3, there is at least one more group which does not contain any of
the points a, b, c and d. Let x be the point determined by the intersection of this group
and the line A. Then the line E determined by {z,c} is a neighbour of A, B and C and
the line F' determined by {z,d} is a neighbour of A, B and D. Obviously E and F are
adjacent. It follows that C(A, B)\{A, B} consists of only one connected component and
so H cannot have diameter four by Theorem 5.1 .

So suppose H has diameter five. For s = v we get a, = 0, so GG is antipodal. Since
s > 3, G is not complete bipartite, and by Theorem 3.3 cannot have any distance regular
antipodal covers. If s < v we have a, > 0, so there are lines B,C € S,(A) such that
BN C # (. Then the line D determined by the point b = B N C and any point in A not
being in the same group as b is a common neighbour of A, B and C. By Corollary 5.3 this

contradicts the existence of H. O
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The two results above are particularly interesting if we consider the following the-
orem proved by Neumaier [N], which classifies strongly regular graphs by their smallest

eigenvalue.

5.6 THEOREM. The strongly regular graphs with smallest eigenvalue —m, m > 2
integral, are the following:

(a) Complete multipartite graphs,

(b) Latin square graphs,

(a) Steiner graphs,

(a) Finitely many other graphs. U

As it can be shown that the smallest eigenvalue of a strongly regular graph cannot
be —1 and we have already seen that strongly regular graphs with irrational eigenval-
ues do not have distance regular antipodal covers (see Corollary 4.15), this yields that
only finitely many strongly regular graphs with smallest eigenvalue —m can have distance

regular antipodal covers.
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6. COVERS AND PERMUTATIONS

For an arbitrary graph G we can construct an r-cover as follows. We associate with each
vertex u of G a set C,, = {uq,...,u,} of r new vertices, and for every edge uv of G we
install a matching between the sets C, and C,. The sets C, are then the fibres of the
cover. The matching associated with edge uv can be described by the permutation f(u,v)
of the set {1,...,r} mapping ¢ to j if and only if vertex u; of C, is adjacent to vertex v;
in C,. This gives us a function f from the set of arcs of G to the symmetric group Sym(r)
with the property that f(u,v) = f(v,u)~! for all arcs (u,v) of G. We call such a function
f a symmetric arc function of index r on G and denote the cover it determines by G(f).

Obviously, two different symmetric arc functions may define isomorphic covering
graphs. In particular, if we permute the vertices in each set C,, with some permuta-
tion 7, of Sym(r), we get an isomorphic cover G(g), where g(u,v) = 7, 1 f(u,v)T,, for all
arcs (u,v) of G. We can choose the permutations 7, so that g takes the identity value on
a spanning forest of G. If a function f has this property, we say that it is normalized on
this forest.

Let H be a distance regular antipodal r-cover with diameter D of some distance
regular graph G. If we number the elements of each antipodal class of G with the elements
of {1,...,r}, this determines a symmetric arc function f so that H = G(f). Suppose
that C' = ¢4, ...,¢p, cq is a cycle of length h < D in G. Without loss of generality we can
assume that f is normalized and that it has identity value on at least h — 1 arcs of the
cycle C, say

fleg,e9) = ... = f(ep_q,¢,) =id and f(c,,cq) =T

We want to show that 7 = 4d. The cycle C can be ‘lifted’ to paths

(Cl)ia(62)i""a(ch)i7(cl)7(i) for iE{l,...,I‘}

in H, where (c;); is the i-th vertex in the fibre C(c;) of H associated with c;. Since
disty ((cy)is (01)T(i)) < h < D, but (¢1); and (¢;),(;) are in the same fibre, this implies

7(i) =i for each i € {1,...,r}. Thus we proved the following statement:

6.1 LEMMA (Godsil). Let G be distance regular graph and f a symmetric arc function
on G determining an antipodal cover of diameter D. Then the product of the values of f

on the edges of any cycle of length h < D is the identity. O

The above argument gives us new existence condition for antipodal covers. Some of
the results of the preceding chapter can be proved using this argument. As an example,

we prove an extension of a part of corollary 5.5:
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6.2 COROLLARY. Latin square graphs do not admit any antipodal covers of diameter

five.

Proof. First, let s = 2, so that G = K, x K,. We can view G as having vertex set
{(¢,7) : 1,5 € {1,...,n} }, and vertices (¢,7) and (h,m) are adjacent whenever i = h or
j = m. Then the edge set of G' consists of n copies of K,, formed by ‘horizontal edges’
{(a, i), (b,7)} and n copies of K,, formed by ‘vertical edges’ {(i,a), (3,b)}. For each of the
horizontal copies of K, we choose a path P, from (1,%) to (n,i) of length n — 1 hitting
all the vertices (j,7) for j = 1,...,n of this copy. Joining all these paths P, by edges
(n,i—1),(1,4) for i = 2,...,n we get a spanning tree T of G.

Now suppose that f is a symmetric arc function on G' determining a cover of diameter
five, and that f is normalized on T. By Lemma 5.1 the product of the values of f on
any triangle or quadrangle of G is the identity. Thus, taking any triangle or quadrangle
in G having all but one edge e in 7" we find that f has to have identity value on that
edge e as well. Iterating this process in each of the horizontal copies of K,, starting with
the path P,

[R)

we find that f has identity value on all the horizontal edges. Any vertical
edge {(a,i —1),(a,i)} lies in a quadrangle with an edge {(n,i — 1),(1,4)} of T and two
horizontal edges of G. Thus, f also has identity value on all these vertical edges; and these
edges provide us with paths of length n —1 for each of the vertical copies of K,,. Following
the same steps as above, f is the identity on all edges of GG, so that the cover is trivial.
For s > 2, G has K,, x K,, as a proper subgraph. Using the same argument as above,
we find that any symmetric arc function f on G defining a cover of diameter five has to
have identity value on this subgraph H. But any edge not in H lies in a triangle with two
edges from H. It follows again that f has identity value on all edges of G and that the

cover is trivial. O
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7. LIST OF FEASIBLE PARAMETER SETS

We generated a list of parameter sets for nontrivial strongly regular graphs which are not
conference graphs. Their parameters (n, k, A, u) and nontrivial eigenvalues &; and &, satisfy
the conditions:

(1) k>& >0, -1>¢&,

(2) max{0,2k —n+1} <A<k -2,

(3) max{l,2k —n+2} < pu<k-1,

(4) k(k—=X—=1)=pun—k—1).

(5) Krein conditions,

(6) Absolute bounds.

Based on that list of parameters for strongly regular graphs we generated a list of

parameter sets for distance regular antipodal r-covers which satisfy the conditions:
in the case D =4

W k< [2n-1),

2) 2<r <k,

3) rlu,

4) the sequences b, and —c; of the cover are decreasing,

6) Krein conditions,

7) Absolute bounds.

8) If p=1orif p=2and k < A(A + 3), then (A + 1)|k (for proof of this see [BCN]).
and in the case D =5

(1) k< [25],

(2) 2<r <k,

(3) the sequences b; and —c; of the cover are decreasing,

(
(
(
(5) the multiplicities of the new eigenvalues of the cover are integers,
(
(
(

(4) the multiplicities of the new eigenvalues of the cover are integers,
(5) Krein conditions,
(6) Absolute bounds.

Our list is sorted by the valency. For each cover we give the number of vertices as a
sum of the k;, the eigenvalues with their multiplicities and the intersection array of it and
its quotient. If a parameter set cannot be realised by any (or any known resp.) distance
regular antipodal graph then the symbol ”//” (or ”?” resp.) precedes v. For completness
we included parameter sets which satisfy all the conditions except Krein conditions and

absolute bounds.
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Here we only list paramewter sets with valency up to 100; a longer list is available

from the authors.

Distance regular antipodal covers with diameter four of nontrivial strongly

regular graphs

v=32=1+5+20+5+1,

v=45=1+6+24+12+2,

/] v=42=1+10420+10+1,

v=63=1+10+ 30+ 20 + 2,

//v=112=1+10+90+ 10+ 1,

v=T0=1+16+36+16+1,

?7v=162=1+20+120+ 20+ 1,

v=243 =1+ 204 180 + 40 + 2,

? v =486 =1+ 20+ 360 + 100 + 5,

? v =486 = 1 + 21 + 420 + 42 + 2,

7v=200=1+22+154+22+1,

51 2.28 110 _ 298 _ 35

{5,4,1,1;1,1,4,5} is 2-cover of {5,4;1,2}

61 312 19 _ 218 _ 35

{6,4,2,1;1,1,4,6} is 3-cover of {6,4;1,3}

101 56 114 o 215 o 46

{10,6,4,1;1,3,6,10} is 2-cover of {10,6;1,6}

101 512 114 _ 230 _ 46

{10,6,4,1;1,2,6,10} is 3-cover of {10,6;1,6}

101 3.2%8 235 3928 _ 420

{10,9,1,1;1,1,9,10} is 2-cover of {10,9;1,2}

161 87 220 _ 228 _ 414

{16,9,4,1;1,4,9,16} is 2-cover of {16,9;1,8}

201 536 260 _ 445 _ 720

{20,18,3,1;1,3,18,20} is 2-cover of {20,18;1,6}

201 572 260 _ 490 _ 720

{20,18,4,1;1,2,18,20} is 3-cover of {20,18;1,6}

201 5180 260 _ 4225 _ 720

{20,18,5,1;1,1,18,20} is 6-cover of {20,18;1,6}

211 4.6162 3105 _ 4.6162 _ 656

{21,20,2,1;1,1,20,21} is 3-cover of {21,20;1,3}
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{22,21,3,1;1,3,21,22} is 2-cover of {22,21;1,6}

?20=2300=1+22+231+44+2, 991 47100 977 _ 4 7100 _ g22
{22,21,4,1;1,2,21,22} is 3-cover of {22,21;1,6}

7?7 v=0600=1+ 22+ 462+ 110+ 5, 221 47250 277 _ 47250 _ 822
{22,21,5,1;1,1,21,22} is 6-cover of {22,21;1,6}

? v =352 =1+ 25+ 300+ 25+ 1, 251 588 3120 _ 588 _ 755
{25,24,2,1;1,2,24,25} is 2-cover of {25,24;1,4}

? v =704 =1+ 25+ 600+ 75 + 3, 25! 5264 3120 _ 5264 _ 755
{25,24,3,1;1,1,24,25} is 4-cover of {25,24;1,4}

?0v="T04=1+26+650+26+1, 261 5.1176 4208 _ 51176 _ G143
{26,25,1,1;1,1,25,26} is 2-cover of {26,25;1,2}

?7v=264=1+4 27+ 180+ 54 + 2, 271 944 355 _ 3132 _ 32
{27,20,6,1;1,3,20,27} is 3-cover of {27,20;1,9}

v=128=1+28+T70+28+1, 981 148 428 _ 956 _ 435
{28,15,6,1;1,6,15,28} is 2-cover of {28,15;1,12}

// v=192=1+28+ 105+ 56 + 2, 981 1416 428 _ 9112 _ 435
{28,15,8,1;1,4,15,28} is 3-cover of {28,15;1,12}

absolute bound fails for 1, 1;

/] v=256=1+28+ 140 + 84 + 3, 981 1424 428 _ 9168 _ 435
{28,15,9,1;1,3,15,28} is 4-cover of {28,15;1,12}

?20v=210=1+32+144+32+1, 321 835 284 _ 470 _ 1020
{32,27,6,1;1,6,27,32} is 2-cover of {32,27;1,12}

?v=2315=1+32+216+ 64+ 2, 321 870 284 _ 4140 _ 1020
{32,27,8,1;1,4,27,32} is 3-cover of {32,27;1,12}
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?7v=420=1+4 32+ 288 4+ 96 + 3, 321 8105 284 _ 4210 _ 1020
{32,27,9,1;1,3,27,32} is 4-cover of {32,27;1,12}

? v =630 =1+ 32+ 432 + 160 + 5, 321 8175 984 _ 4350 _ 120
{32,27,10,1;1,2,27,32} is 6-cover of {32,27;1,12}

?20v=420=14+33+352+33+1, 331 5.7105 3154 _ 5 7105 _ 955
{33,32,3,1;1,3,32,33} is 2-cover of {33,32;1,6}

?v=630=1+4 33+ 528 + 66 + 2, 331 5.7210 3154 _ 5 7210 _ 955
{33,32,4,1;1,2,32,33} is 3-cover of {33,32;1,6}

? v =1260 =1+ 33 4+ 1056 + 165 + 5, 331 5.7525 3154 _ 57525 _ 95
{33,32,5,1;1,1,32,33} is 6-cover of {33,32;1,6}

// v=912=1+40+ 420 + 440 + 11, 401 2076 719 _ 9760 _ 356
{40,21,22,1;1,2,21,40} is 12-cover of {40,21;1,24}

absolute bound fails for 0, 2;

?2v=704=14+36+630+36+1, 361 6176 4231 _ 176 _ g120
{36,35,2,1;1,2,35,36} is 2-cover of {36,35;1,4}

? v=1408 = 1+ 36 + 1260 + 108 + 3, 361 6528 4231 _ 528 _ g120
{36,35,3,1;1,1,35,36} is 4-cover of {36,35;1,4}

?0=1408 =1+ 37+ 1332+ 37 +1, 371 6.1352 5407 _ 61352 _ 7296
{37,36,1,1;1,1,36,37} is 2-cover of {37,36;1,2}

? v=252=1+45+160 +45+ 1, 45! 1521 390 — 3105 _ g3
{45,32,9,1;1,9,32,45} is 2-cover of {45,32;1,18}

v=378=1+454 240+ 90 + 2, 451 1542 390 _ 3210 _ 935
{45,32,12,1;1,6, 32,45} is 3-cover of {45,32;1,18}

?7 v =756 =1+ 45+ 480 + 225 + 5, 451 15105 390 _ 3525 _ 935
{45,32,15,1;1,3,32,45} is 6-cover of {45,32;1,18}
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? v =392 =1+45+ 300 + 45 + 1,

451 970 3150 _ 5126 _ 1145

{45,40,6,1;1,6,40,45} is 2-cover of {45,40;1,12}

! v=>588 =1+454 450+ 90 + 2,

451 9140 3150 _ 5252 _ 1145

{45,40,8,1;1,4,40,45} is 3-cover of {45,40;1,12}

! v="784=1+454 600+ 135 + 3,

451 9210 3150 _ 5378 . 1145

{45,40,9,1;1,3,40,45} is 4-cover of {45,40;1,12}

! v=1176 =14 45 + 900 + 225 + 5,

451 9350 3150 _ 5630 . 1145

{45,40,10,1;1,2,40,45} is 6-cover of {45,40;1,12}

! v =2352=1+45+ 1800 + 495 + 11,

451 9770 3150 _ 51386 _ 1145

{45,40,11,1;1,1,40,45} is 12-cover of {45,40;1,12}

! v="798 =1+454 660+ 90 + 2,

451 6.7266 3209 o 6.7266 o 1256

{45,44,6,1;1,3,44,45} is 3-cover of {45,44;1,9}

! v=2394 =1+ 45+ 1980 + 360 + 8,

451 6.71064 3209 o 6.71064 o 1256

{45,44,8,1;1,1,44,45} is 9-cover of {45,44;1,9}

! v="784=1+464 690 + 46 4 1,

461 6.8196 4276 _ 6.8196 _ 10115

{46,45,3,1;1,3,45,46} is 2-cover of {46,45;1,6}

! v=1176 =14 46 + 1035+ 92 4 2,

461 6.8392 4276 - 6.8392 - 10115

{46,45,4,1;1,2,45,46} is 3-cover of {46,45;1,6}

! v=12352=1+446+ 2070 + 230 + 5,

461 6.8980 4276 o 6.8980 o 10115

{46,45,5,1;1,1,45,46} is 6-cover of {46,45;1,6}

! v=1276 =14+49+ 1176 + 49 4 1,

491 7319 5406 _ 7319 _ 231

{49,48,2,1;1,2,48,49} is 2-cover of {49,48;1,4}

! v=12352=1449+ 2352 + 147 + 3,

491 7957 5406 _ 7957 _ 231

{49,48,3,1;1,1,48,49} is 4-cover of {49,48;1,4}
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? v =2552 =1+ 50+ 2450 + 50 + 1, 501 7.1638 725 _ 71638 _ 8550
{50,49,1,1;1,1,49,50} is 2-cover of {50,49;1,2}

?v=0650=1+54+540 +54 +1, 541 9130 4234 _ @195 _ 1790
{54,50,5,1;1,5,50,54} is 2-cover of {54,50;1,10}

? v =1625 = 1+ 54 + 1350 + 216 + 4, 541 9520 4234 _ G780 _ 1190
{54,50,8,1:1,2,50,54} is 5-cover of {54,50;1,10}

? v = 3250 = 1+ 55+ 2970 + 220 + 4, 551 7.41300 5429 _ 7 41300 _ 1220
{55,54,4,1;1,1,54,55} is 5-cover of {55,54;1,5}

? v =324 =1+56+210 + 56 + 1, 561 1436 2140 _ 4126 _ 1621
{56,45,12,1;1,12,45,56} is 2-cover of {56,45;1,24}

? v =486 =1+456+ 315+ 11242, 561 1472 2140 _ 4252 _ 1621
{56,45,16,1;1,8,45,56} is 3-cover of {56,45;1,24}

? v =648 =1+ 56 + 420 + 168 + 3, 561 14108 9140 _ 4378 _ 1421
{56,45,18,1;1,6,45,56} is 4-cover of {56,45;1,24}

? v=972=1+ 56+ 630 + 280 + 5, 561 14180 9140 _ 4630 _ 1521
{56,45,20,1;1,4,45,56} is 6-cover of {56,45;1,24}

? v =1296 =1+ 56 + 840 + 392 + 7, 561 14252 2140 _ 4882 _ 1421
{56,45,21,1;1,3,45,56} is 8-cover of {56,45;1,24}

? v =648 =1+57+532+57+1, 571 7.5162 3266 __ 7 5162 _ 1557
{57,56,6,1;1,6,56,57} is 2-cover of {57,56;1,12}

? v =972=1+57+798 + 114 + 2, 571 7.5324 3266 _ 7 5324 _ 1557
{57,56,8,1;1,4,56,57} is 3-cover of {57,56;1,12}

? v=1296 =1+ 57+ 1064 + 171 + 3, 571 7.5486 3266 _ 7 5486 _ 1557
{57,56,9,1;1,3,56,57} is 4-cover of {57,56;1,12}
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! v=1944 =14 57+ 1596 + 285 + 5, 571 7.5810 3266 _ 7 5810 _ 1557
{b7,56,10,1;1,2,56,57} is 6-cover of {57,56;1,12}

? v =23888 =1+ 57+ 3192 + 627 + 11, 571 7.51782 3266 _ 7 51782 _ 1557
{57,56,11,1;1,1,56,57} is 12-cover of {57,56;1,12}

? v =552=1+75+400+ 75+ 1, 751 1569 3230 _ 5207 _ 1745
{75,64,12,1;1,12,64,75} is 2-cover of {75,64;1,24}

? v=2828 =1+ 75+ 600+ 150 + 2, 751 15138 3230 _ 5414 _ 1745
{75,64,16,1;1,8,64,75} is 3-cover of {75,64;1,24}

? v =1104 =1+ 75+ 800 + 225 + 3, 751 15207 3230 _ 5621 _ 1745
{75,64,18,1;1,6,64,75} is 4-cover of {75,64;1,24}

? v =1656 =1+ 75+ 1200 + 375 + 5, 751 15345 3230 _ 51035 _ 1745
{75,64,20,1;1,4,64,75} is 6-cover of {75,64;1,24}

? v=2208 =1+ 75+ 1600 + 525 + 7, 751 15483 3230 _ 51449 _ 1745
{75,64,21,1;1,3,64,75} is 8-cover of {75,64;1,24}

? v =23312 =14 75+ 2400 + 825 + 11, 751 15759 3230 _ 52277 _ 1745
{75,64,22,1;1,2,64,75} is 12-cover of {75,64;1,24}

? v =1104=14+76+ 950 + 76 + 1, 761 8.7276 4437 _ g 7276 _ 16114
{76,75,6,1;1,6,75,76} is 2-cover of {76,75;1,12}

? v =1656 = 1+ 76 + 1425 + 152 + 2, 761 8.7552 4437 _ 87552 _ 16114
{76,75,8,1;1,4,75,76} is 3-cover of {76,75;1,12}

? v =2208 =1+ 76 + 1900 + 228 + 3, 761 8.7828 4437 _ 87828 _ 1gll4
{76,75,9,1;1,3,75,76} is 4-cover of {76,75;1,12}

? v=23312=1+ 76 + 2850 + 380 + 5, 761 8.71380 4437 _ g 71380 _ 14114
{76,75,10,1;1,2,75,76} is 6-cover of {76,75;1,12}
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? v=06624 =1+ 76+ 5700 + 836 + 11, 761 8.73036 4437 _ g 73036 _ jgll4
{76,75,11,1;1,1,75,76} is 12-cover of {76,75;1,12}

?7v=1080=14+774+924+77+1, 771 11210 5385 _ 7330 _ 13154
{77,72,6,1;1,6,72,77} is 2-cover of {77,72;1,12}

?v=1620 =1+ 77+ 1386 + 154 + 2, 77t 11420 5385 7660 13154
{77,72,8,1;1,4,72,77} is 3-cover of {77,72;1,12}

7?7 v=2160=1+4 77+ 1848 + 231 + 3, 771 11630 5385 __ 7990 _ 13154
{77,72,9,1;1,3,72,77} is 4-cover of {77,72;1,12}

?7v=23240=1+77+ 2772 4 385 + 5, 771 111050 5385 _ 71650 _ 13154
{77,72,10,1;1,2,72,77} is 6-cover of {77,72;1,12}

? v=2160=14 7842002+ 78 +1, 781 8.8540 715 _ g 8540 _ 19364
{78,77,3,1;1,3,77,78} is 2-cover of {78,77;1,6}

? v=23240 = 1 + 78 + 3003 + 156 + 2, 781 8.81080 715 __ g 81080 __ 19364
{78,77,4,1;1,2,77,78} is 3-cover of {78,77;1,6}

? v =6480 = 1 + 78 + 6006 + 390 + 5, 781 8.82700 715 _ g 82700 _ 19364
{78,77,5,1;1,1,77,78} is 6-cover of {78,77;1,6}

/] v=1248 =1+ 81 + 756 + 405 + 5, 811 27104 3168 _ 3936 _ 1539

{81, 56,30,1;1,6,56,81} is 6-cover of {81,56;1,36}

Krein condition fails for 1,4, 1;
/] v ="TA88 =1+ 81 + 4536 + 2835 + 35, 811 27728 3168 _ 36552 _ 1539
{81,56,35,1;1,1,56,81} is 36-cover of {81,56;1,36}

Krein condition fails for 1,4, 1;

? v="750=1+81+504+ 162 + 2, 811 2750 g144 _ 3450 _ 105
{81,56,18,1;1,9,56,81} is 3-cover of {81,56;1,27}

? v=2250 =1+ 8141512 + 648 + 8, 811 27200 glad __ 31800 _ 105
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{81,56,24,1;1,3,56,81} is 9-cover of {81,56;1,27}

? v =23404 =1+ 81+ 3240 + 81 + 1, 811 9851 71035 _ 9851 _ 11666
{81,80,2,1:1,2,80,81} is 2-cover of {81,80;1,4}

?7 v =6808 =1+ 81 + 6480 + 243 + 3, 811 92653 71035 _ 2553 __ 11666
{81,80,3,1;1,1,80,81} is 4-cover of {81,80;1,4}

? v=06808 =1+ 8246642 + 82+ 1, 821 9,11702 g1886 _ g 11702 _ 11517
{82,81,1,1;1,1,81,82} is 2-cover of {82,81;1,2}

?20v=800=1+84+630+84+1, 841 14120 4315 _ 280 _ 1484
{84,75,10,1;1,10,75,84} is 2-cover of {84,75;1,20}

? v =1600 = 1+ 84 + 1260 + 252 + 3, 841 14360 4315 _ 840 _ 1584
{84,75,15,1;1,5,75,84} is 4-cover of {84,75;1,20}

? v =2000 = 1+ 84 + 1575 + 336 + 4, 841 14480 4315 _ 1120 _ 1484
{84,75,16,1;1,4,75,84} is 5-cover of {84,75;1,20}

?7 v =4000 =14 84+ 3150 + 756 + 9, 841 141080 4315 _ 2520 _ 14584
{84,75,18,1;1,2,75,84} is 10-cover of {84,75;1,20}

? v =1600 =1+ 85+ 1428 + 85 + 1, 851 9.2400 5595 _ g 9400 _ 15204
{85,84,5,1;1,5,84,85} is 2-cover of {85,84;1,10}

?7 v =4000 =1+ 85+ 3570 + 340 + 4, 851 9.21600 5595 _ g 91600 _ 15204
{85,84,8,1;1,2,84,85} is 5-cover of {85,84;1,10}

? v =28000 =1+ 85+ 7140 + 765 + 9, 851 9.23600 5595 _ g 93600 _ 15204
{85,84,9,1;1,1,84,85} is 10-cover of {85,84;1,10}

?v=0644=1+96+450+96+ 1, 961 2446 4252 _ 4276 _ 1669
{96,75,16,1;1,16,75,96} is 2-cover of {96,75;1,32}

? v=1288 =14 96+ 900 4 288 + 3, 96! 24138 4252 _ 4828 _ 1669
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{96,75,24,1;1,8,75,96} is 4-cover of {96,75;1,32}

? v = 2576 = 1 + 96 + 1800 + 672 + 7, 061 24322 4252 _ 41932 _ 1669
{96,75,28,1;1,4,75,96} is 8-cover of {96,75;1,32}

// v=1170 = 1+ 96 + 588 + 480 + 5, 96! 4839 6104 _ 9936 _ g90
{96,49,40,1;1,8,49,96} is 6-cover of {96,49;1, 48}
absolute bound fails for 1, 1;

Krein condition fails for 1,4, 1;
/] v=23120 =1+ 96 + 1568 + 1440 + 15, 96! 48117 6104 _ 22808 _ 890
{96,49,45,1;1,3,49,96} is 16-cover of {96,49; 1,48}

Krein condition fails for 1,4, 1;

? v=1650 =1+ 96+ 1456 + 96 + 1, 96! 12330 6572 _ 8495 _ 14252
{96,91,6,1;1,6,91,96} is 2-cover of {96,91;1,12}

?0=2475=1+ 96+ 2184 + 192 + 2, 961 12660 572 _ 8990 _ 14252
{96,91,8,1;1,4,91,96} is 3-cover of {96,91;1,12}

7 v=23300=1+ 96+ 2912 + 288 + 3, 061 12990 6572 _ g1485 _ 14252
{96,91,9,1;1,3,91,96} is 4-cover of {96,91;1,12}

? v =4950 = 1+ 96 + 4368 + 480 + 5, 96! 121650 6572 _ @2475 _ 14252
{96,91,10,1;1,2,91,96} is 6-cover of {96,91;1,12}

?v=3300=1497+ 3104497 +1, 971 9.8825 71067 _ g 8825 _ 13582
{97,96,3,1;1,3,96,97} is 2-cover of {97,96;1,6}

?7 v =4950 =14 97 + 4656 + 194 + 2, 971 9.81650 71067 _ g 81650 __ 13582
{97,96,4,1;1,2,96,97} is 3-cover of {97,96;1,6}

? v=29900 =1+ 97+ 9312 + 485 + 5, 971 9.84125 71067 _ g 4125 _ 13582
{97,96,5,1;1,1,96,97} is 6-cover of {97,96;1,6}

? v=23534=1+99 + 3234 + 198 + 2, 991 9 91178 (836 _ g 91178 _ 15341
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{99,98,6,1;1,3,98,99} is 3-cover of {99,98;1,9}

? v =10602 =1+ 99 + 9702 4 792 + 8, 991 9.94712 836 _ g 94712 _ 15341
{99,98,8,1;1,1,98,99} is 9-cover of {99,98;1,9}

? v = 5152 = 1+ 100 + 4950 + 100 + 1, 100t 101288 81540 _ 11288 _ 191035
{100,99,2,1;1,2,99,100} is 2-cover of {100,99;1,4}

?7 v=10304 =1+ 100 + 9900 + 300 + 3, 1001 103864 81540 _ 13864 _ 191035
{100,99,3,1;1,1,99,100} is 4-cover of {100,99;1,4}

Distance regular antipodal but not bipartite covers with diameter five of non-

trivial strongly regular graphs

v=20=14+3+6+6+3+1, 3122315 0% —24 — 223
{3,2,1,1,1;1,1,1,2,3} is 2-cover of {3,2;1,1}

/] v=1224=1+10+ 45+ 135+ 30 + 3, 10" 5.330 235 108 _ 420 _ 5 330
{10,9,6,2,1;1,2,2,9,10} is 4-cover of {10,9;1,2}

Krein condition fails for 1,5, 1;

?v=2324=1+21+140+ 140+ 21 + 1, 211 921 3105 120 _ 56 _ 921
{21,20,9,3,1;1,3,9,20,21} is 2-cover of {21,20;1,3}

/] v=486 =1+ 21 + 140 + 280 + 42 + 2, 211 942 3105 (240 _ 56 _ 942
{21,20,12,3,1;1, 3,6,20,21} is 3-cover of {21,20;1,3}

Krein condition fails for 1,5, 1;

/] v=972 =1+ 21+ 140 4+ 700 + 105 + 5, 211 9105 3105 (600 _ 56 _ 105
{21,20,15,3,1;1,3,3,20,21} is 6-cover of {21,20;1,3}

Krein condition fails for 1,5, 1;

? 0 =729 =1+ 22+ 220 + 440 + 44 + 2, 921 7132 4132 _ 9330 _ 5110 _ 1124
{22,20,18,2,1;1,2,9,20,22} is 3-cover of {22,20;1,2}

v=252=1+25+100+ 100+ 25+ 1, 251 159 735 175 _ 390 _ 542
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{25,16,9,4,1;1,4,9,16,25} is 2-cover of {25,16;1,4}

// v=378=1+425+ 100+ 200 4 50 + 2, 251 1518 735 1150 _ 390 _ 584
{25,16,12,4,1;1,4,6,16,25} is 3-cover of {25,16;1,4}
Krein condition fails for 1,5, 1;

absolute bound fails for 1, 1;

/] v=2875=1+30+ 144+ 576 + 120 + 4, 301 1556 584 (0560 _ 590 _ 184
{30,24,20,5,1;1,5,5,24,30} is 5-cover of {30,24;1,5}

Krein condition fails for 1,4, 1;

// v=1693 =1+ 30+ 200 + 400 + 60 + 2, 301 1544 955 (308 _ 3175 _ 110
{30,20,18,3,1;1,3,9,20,30} is 3-cover of {30,20;1,3}

Krein condition fails for 1,5, 1;

? v =704 =136+ 315+ 315+ 36 + 1, 361 13.336 4231 (280 _ g120 _ 13 336
{36,35,16,4,1;1,4,16,35,36} is 2-cover of {36,35;1,4}

//v=1408 =136+ 315+ 945+ 108 +3, 36 13.3108 4231 (840 _ g120 _ 13 3108
{36,35,24,4,1;1,4,8,35,36} is 4-cover of {36,35;1,4}

Krein condition fails for 1,5, 1;

/) v=2816=1+36+315+2205+252+7, 361 13.3252 4231 (1960 _ g120 _ |3 3252
{36,35,28,4,1;1,4,4,35,36} is 8-cover of {36,35;1,4}

Krein condition fails for 1,5, 1;

/] v=432=14+40+ 1754+ 175+ 40+ 1, 401 2012 4140 o189 _ Q75 _ 1615
{40, 35,16,8,1;1,8,16,35,40} is 2-cover of {40, 35;1,8}
Krein condition fails for 1,4, 1;

absolute bound fails for 1, 1;

/] v=2864=1+40+ 175+ 525 + 120 + 3, 401 2036 4140 (567 _ 875 _ 1645
{40, 35,24,8,1:1,8,8, 35,40} is 4-cover of {40,35;1,8}
Krein condition fails for 1,4, 1;

absolute bound fails for 1,1;
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v =>512=1+45+ 210+ 210 + 45 + 1, 451 2710 1345 3120 _ 3210 _ 5126
{45,28,15,6,1;1,6,15,28,45} is 2-cover of {45,28;1,6}

/] v="T68 =1+ 45+ 210+ 420 + 90 + 2, 451 2720 1345 3240 _ 3210 _ 5252
{45,28,20,6,1;1,6,10,28,45} is 3-cover of {45,28;1,6}
Krein condition fails for 1,5, 1;

absolute bound fails for 1, 1;

// v=1280=1+ 45+ 210 + 840 + 180 + 4, 451 2740 1345 3480 _ 3210 _ 5504
{45,28,24,6,1;1,6,6,28,45} is 5-cover of {45,28;1,6}
Krein condition fails for 1,5, 1;

absolute bound fails for 1, 1;

? v=2352=1+50+ 1125+ 1125+ 50 + 1, 501 14175 8500 756 _ G675 _ 1()245
{50,45,24,2,1;1,2,24,45,50} is 2-cover of {50,45;1,2}

? v=23528 =1+ 504+ 1125 + 2250 + 100 + 2, 501 14350 8500 1512 __ 675 _ 1()490
{50,45,32,2,1;1,2,16,45,50} is 3-cover of {50,45;1,2}

? v=4704 =1+ 50+ 1125 + 3375 + 150 + 3, 501 14525 8500 (2268 _ 675 _ 1()735
{50,45,36,2,1;1,2,12,45,50} is 4-cover of {50,45;1,2}

? v ="7056 =14+ 50+ 1125 + 5625 + 250 + 5, 501 14875 8500 ()3780 _ 6675 _ 11225
{50,45,40,2,1;1,2,8,45,50} is 6-cover of {50,45;1,2}

? v=29408 = 1+ 50+ 1125 + 7875 + 350 + 7, 501 141225 8500 (5292 _ 6675 _ 11715
{50,45,42,2,1;1,2,6,45,50} is 8-cover of {50,45;1,2}

? v=14112=1+50+ 1125+ 12375+ 550+ 11, 50 141925 8500 8316 _ 675 _ 1(2695
{50,45,44,2,1;1,2,4,45,50} is 12-cover of {50,45;1,2}

? v=18816=1+50+1125+ 16875+ 750+ 15, 50! 142625 8500 11340 _ 6675 _ 13675
{50,45,45,2,1;1,2,3,45,50} is 16-cover of {50,45;1,2}

/] v=972=1+51+ 272+ 544 + 102 + 2, 511 2734 15°1 %12 — 3272 _ 9102
{51,32,30,6,1;1,6,15,32,51} is 3-cover of {51,32;1,6}
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Krein condition fails for 1,5, 1;

absolute bound fails for 1, 1;

? v=1300= 1455+ 594 4+ 594 4+ 55 + 1, 551 18.05° 5429 (540 _ 10220 _ 18.0°°
{b5b,54,25,5,1;1,5,25,54,55} is 2-cover of {b55,54;1,5}

/] v=3250 =1+ 55+ 594+ 2376 + 220 +4, 55! 18.0220 5429 (2160 _ 10220 _ 18 (220
{b5,54,40,5,1;1,5,10,54,55} is 5-cover of {55,54;1,5}

Krein condition fails for 1,5, 1;

// v =16500=1+55+594 + 5346 + 495+ 9, 55! 18.0495 5429 (4860 _ 1220 _ 18 (495
{b5b,54,45,5,1;1,5,5,54,55} is 10-cover of {55,54;1,5}

Krein condition fails for 1,5, 1;

/] v=4725 =1+ 64+ 880 + 3520 + 256 + 4, 64! 20100 10350 _ 13072 _ 594 _ 14308
{64,55,52,4,1;1,4,13,55,64} is 5-cover of {64,55;1,4}

Krein condition fails for 1,5, 1;

? v=2160 =1+ 78+ 1001 + 1001 + 78 4+ 1, 781 23.278 6715 (0924 _ 12364 _ 23278
{78,77,36,6,1;1,6,36,77,78} is 2-cover of {78,77;1,6}

v = =1+78+ + + 106 +2, . - —23.2
// 3240 = 1478 + 1001 + 2002 + 156 +2, 78! 23.2156 6715 (1848 _ 19364 _ 93 2156
{78,77,48,6,1;1,6,24,77,78} is 3-cover of {78,77;1,6}

Krein condition fails for 1,5, 1;

// 4320 = 1+ 78+ 100143003 + 234 +3, 78! 23.2234 6715 (2772 364 234
{78,77,54,6,1;1,6,18,77,78} is 4-cover of {78,77;1,6}

Krein condition fails for 1,5, 1;

v =6480 = 14 784+ 1001 + 5005+ 390 + 5, 78! 23.2390 715 (4620 _ 19364 _ 93 9390
//
{78,77,60,6,1;1,6,12,77,78} is 6-cover of {78,77;1,6}

Krein condition fails for 1,5, 1;
// v =28640 = 1+ 78+ 1001 + 7007 + 546 + 7, 78! 23.2546 715 (6468 _ 19364 _ 93 2546

{78,77,63,6,1;1,6,9,77,78} is 8-cover of {78,77;1,6}

Krein condition fails for 1,5, 1;
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// v=29720 = 1+ 78+ 1001 + 8008 + 624 + 8, 78! 23.2624 715 (7392 _ 12364 _ 93 2624
{78,77,64,6,1;1,6,8,77,78} is 9-cover of {78,77;1,6}

Krein condition fails for 1,5, 1;

//v=12960 = 1+78+1001+11011+858+11, 78! 23.2858 g715 (10164 _ 19364 _ 93 9858
{78,77,66,6,1;1,6,6,77,78} is 12-cover of {78,77;1,6}

Krein condition fails for 1,5, 1;

? v =22780 = 1+784+5616+16848+234+3, 78! 144355 112210 _ 310452 _ 73484 _ 132278
{78,72,63,1,1;1,1,21,72,78} is 4-cover of {78,72;1,1}

? v = 39865 = 1+784+5616+33696+468+6, 78! 148710 112210 _ 320904 _ 73484 _ 134556
{78,72,72,1,1;1,1,12,72,78} is 7-cover of {78,72;1,1}

/] v=2187 =1+ 78 + 650 + 1300 + 156 + 2, 781 3954 2478 3702 _ 3650 _ 702
{78,50,42,6,1;1,6,21,50,78} is 3-cover of {78,50;1,6}
Krein condition fails for 1,5, 1;

absolute bound fails for 1, 1;

? v =06808 =1+ 82+ 332143321 +82+1, 821 101517 81886 _ g1886 __ 11517 _ gol
{82,81,80,2,1;1,2,80,81,82} is 2-cover of {82,81;1,2}

// v=2810=1+ 96+ 308 + 308 + 96 + 1, 96! 548 6264 (0385 — 12140 _ 3612
{96,77,36,24,1;1,24,36,77,96} is 2-cover of {96,77;1,24}
Krein condition fails for 1,4, 1;

absolute bound fails for 1, 1;

/] v=1215=1+96 + 308 + 616 + 192 + 2, 96! 5416 6264 770 _ 12140 _ 3624
{96,77,48,24,1;1,24,24,77,96} is 3-cover of {96,77;1,24}
Krein condition fails for 1,4, 1;

absolute bound fails for 1, 1;

? v =5152=14+1004+2475+2475+100+1, 100! 121035 81540 _g1540 _ 191035 _ 1!
{100, 99,96,4,1;1,4,96,99,100} is 2-cover of {100,99;1,4}

/] v=4752 = 1+100+2275+2275+100+1, 100! 20429 12945 41925 _ g1430 _ 4(22
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{100,91,64,4,1;1,4,64,91,100} is 2-cover of {100,91;1,4}
absolute bound fails for 5, 5;

Distance regular antipodal and bipartite covers with diameter five of nontrivial

strongly regular graphs

v=20=1+3+6+6+3+1, 312415 — 15 —92¢ 31
{3,2,2,1,1;1,1,2,2,3} is 2-cover of {3,2;1,1}

v=32=14+5+104+104+5+1, 51 35110 110 _35 _ 51
{5,4,3,2,1;1,2,3,4,5} is 2-cover of {5,4;1,2}

v=100=1+74+42+424+7+1, 71 321 928 _ 928 _ 321 _ 71
{7,6,6,1,1;1,1,6,6,7} is 2-cover of {7,6;1,1}

v=112=1+10+45+45+ 10 + 1, 101 420 235 935 _ 420 _ 11
{10,9,8,2,1;1,2,8,9,10} is 2-cover of {10,9;1,2}

[/ v=112=1410+45+ 45+ 10+ 1, 10! 5.310 235 36 _ 420 _ 5310
{10,9,4,2,1;1,2,4,9,10} is 2-cover of {10,9;1,2}

v=154=1+16+60+ 60+ 16 + 1, 161 621 255 — 255 — 621 — 16!
{16,15,12,4,1;1,4,12,15,16} is 2-cover of {16,15;1,4}

? 0 =2324=1+21+ 140 + 140 + 21 + 1, 211 56 3105 _ 3105 _ 56 _ 971
{21,20,18,3,1;1,3,18,20,21} is 2-cover of {21,20;1,3}

v=200=1+224+77T+77+22+1, 221 822 977 _ 977 _ 822 _ 991
{22,21,16,6,1;1,6,16,21,22} is 2-cover of {22,21;1,6}

? v =2352=1+25+150+ 150+ 25+ 1, 251 755 3120 _ 3120 _ 755 _ 951
{25,24,21,4,1;1,4,21,24,25} is 2-cover of {25,24;1,4}

?Tv="T04=1+26+325+325+26+1, 261 6143 4208 _ 4208 _ @gl43 _ ogl
{26,25,24,2,1;1,2,24,25,26} is 2-cover of {26,25;1,2}
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! v=420=1+33+176 + 176 + 33 + 1,

331 955 3154 _ 3154 _ 955

- 33!

{33,32,27,6,1;1,6,27,32,33} is 2-cover of {33,32;1,6}

! v="T04=1+36+ 315+ 315+ 36+ 1,

361 8120 4231 _ 4231 _ 8120

— 36!

{36,35,32,4,1;1,4,32,35,36} is 2-cover of {36,35;1,4}

¢ v=1408 =1+ 37 + 666 + 666 + 37 + 1,

371 7296 5407 o 5407 _ 7296

— 37t

{37,36,35,2,1;1,2,35,36,37} is 2-cover of {37,36;1,2}

! v=2032=14454+220+220+45+1,

451 1256 3209 _ 3209 _ 1256

— 451

{45,44,36,9,1;1,9,36,44,45} is 2-cover of {45,44;1,9}

! v="784=1+46 + 345 + 345 + 46 + 1,

461 10115 4276 _ 4276 _ 10115

— 461

{46,45,40,6,1;1,6,40,45,46} is 2-cover of {46,45;1,6}

! v=1276 =1+ 49 + 588 + 588 + 49 + 1,

491 9231 5406 o 5406 o 9231

— 491

{49,48,45,4,1;1,4,45,48,49} is 2-cover of {49,48;1,4}

! v=2552 =1+ 50+ 1225+ 1225 + 50 + 1,

501 8550 6725 o 6725 o 8550

— 50!

{50,49,48,2,1;1,2,48,49,50} is 2-cover of {50,49;1,2}

! v=1300=1+ 55+ 594 + 594 + 55 + 1,

551 10220 5429 _ 5429 _ 10220

— 55!

{55, 54,50,5,1;1,5,50,54,55} is 2-cover of {55,54;1,5}

! v=10648 =14 57 + 266 + 266 + 57 + 1,

571 1557 3266 . 3266 o 1557

— 57t

{57,56,45,12,1;1,12,45,56,57} is 2-cover of {57,56;1,12}

¢ v=06500=1+57+ 3192 + 3192 + 57 + 1,

571 81520 71729 _ 71729 _ 81520

— 57!

{b7,56,56,1,1;1,1,56,56,57} is 2-cover of {57,56;1,1}

! v=2146 = 1+ 64 + 1008 + 1008 + 64 + 1,

641 10406 6666 _ 6666 _ 10406

— 64!

{64,63,60,4,1;1,4,60,63,64} is 2-cover of {64,63;1,4}

? v=1104 =1+ 76+ 475 + 475+ 76 + 1,

761 16114 4437 _ 4437 _ 16114

— 76!

{76,75,64,12,1; 1,12, 64, 75,76} is 2-cover of {76,75;1,12}
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? v =2160 = 14 78 + 1001 + 1001 + 78 + 1, 781 12364 6715 _ 715 _ 12364 _ 781
{78,77,72,6,1;1,6,72,77,78} is 2-cover of {78,77;1,6}

? y=23404=1+ 81+ 1620+ 1620 + 81 +1, 811 11666 71035 _ 71035 _ 11666 _ g1
{81,80,77,4,1;1,4,77,80,81} is 2-cover of {81,80;1,4}

?v=1600=1+85+ 714+ 714485+ 1, 851 15204 5595 _ 5595 _ 15204 _ g5l
{85,84,75,10,1;1,10,75,84,85} is 2-cover of {85,84;1,10}

? v =1334 =1+ 96 + 570 + 570 + 96 + 1, 961 20115 4551 _ 4551 _ 90115 _ g6l
{96,95,80,16,1;1,16,80,95,96} is 2-cover of {96,95;1,16}

?v=3300=1497+ 1552+ 1552+ 97 + 1, 971 13582 71067 _ 71067 _ 13582 _ g7l
{97,96,91,6,1;1,6,91,96,97} is 2-cover of {97,96;1,6}

?7v=2356=1+99+ 1078 + 1078 +99 + 1, 991 15341 6836 _ 836 _ 15341 _ g9l
{99,98,90,9,1;1,9,90,98,99} is 2-cover of {99,98;1,9}

The only four parameter sets in our list which are known not to exist are:
{10,6,4,1;1,3,6,10},

{10,9,1,1;1,1,9, 10},
{107 9’ 47 2’ ]‘; 1’ 27 47 97 10}7
{28,15,8,1;1, 4,15, 28).

The first one should be a distance regular antipodal cover of complement of the triangular
graph T'(7). Using Theorem 4.1. it can be proven that such graph has no distance regular
antipodal cover of diameter four (see [BB]). The fourth one should be a distance regular
antipodal cover of the halved 8-cube. Again using Theorem 4.1. it can be shown that
the 8-cube is the only distance regular antipodal cover of it (see [BB]). The second and
third one should be a distance regular antipodal covers of the Gewirtz graph. But the
only distance regular antipodal cover of this graph is its bipartite double with intersection
array {10,9,8,2,1;1,2,8,9,10} (for the proof of this see [BCN]).
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APPENDIX A

A t-(v,s, \,) design is a collection of s-subsets (called blocks) of a set of v elements called
points, such that each ¢-set of points lies in exactly A, blocks. We assume that ¢ < s to
exclude degenerate cases. If A, = 1, then a t-design is called Steiner system.

In a t-design let \; denotes the number of blocks containing a given set of ¢ points,
with 0 <4 < t. Let S be some i-set. Then S is contained in A; blocks and each of them
contains (i::) distinct t-sets with S as subset. On the other hand the set S can be enlarged

to t-set in (“_ii) ways and each of these ¢-set is contained in A, blocks. So we conclude:

t_
)
t—1 t—1
Therefore )\; is independent of S. This actually means that a ¢-design is also ¢-design, for
0 < ¢ < t. The number of blocks in a design is equal to A, and is denoted by b. Every

point in a 1-design lies in A; blocks and this number is often denoted by . When ¢ > 2
we get from upper identity for 4 =0,¢t =1 and ¢ = 1, ¢ = 2 the following:

bs=rv and r(s—1)=A(v—1)

or 1 1
i S WA Gl
s—1 s(s—1)

r= A

For any design with more then one block b > v, which is known as Fisher’s inequality
[R]. Designs with b = v are called square (or symmetric) and have property that any two
blocks meet in exactly A, points. A design is said to be quasi symmetric if the cardinality
of the intersection of two distinct blocks takes only two values. Any 2-(v, s, 1) design is an

example of such design.

o1



APPENDIX B

An orthogonal array OA(s,v) is an v? x s array of v symbols such that in any pair
of distinct columns of the array each ordered pair of symbols occurs exactly once. A
geometric representation of OA(s,v) can be given in the following way. Take a set P of sv

symbols (elements) called points and partition it into s subsets G, ..., G, (called groups)

s

of size v. Now choose from the set of points P a family L of s subsets (called lines) which

has the property that every pair of distinct points in P occurs in precisely one group or

one line but not both. In other words we require that

(a) each line intersects each group in exactly one point and each other line in at most one
point.

(b) for any two points from distinct groups there is a line which contains them (by (a)
this line is unique).

2

It is easy to see that the number of lines has to be v“. This geometric representation is

known as transversal design T D(s,v).

Figure 6: A transversal design

If we denote the elements in each group by the numbers 1, ..., v, we can present each
line | as s-tuple, where i-th entry is equal to the label of ING;. This gives us an orthogonal
array. On the other hand if for each column of an orthogonal array we identify positions
with the same entries, new columns can be treated as groups and rows of OA(s, v) as lines
of a transversal design TD(s,v).

Now choose a line | of T D(s,v). Then all lines through the point [ N G, partition
each G, for ¢ > 2. There is exactly v such lines, since G, has v elements. So the line [
intersects in each group with v — 1 lines. Of course these lines are pairwise distinct for
different groups and their number is less or equal to the number of all lines in T'D(s, v).
This gives us s(v — 1) + 1 < v?2, and thus s < v + 1.
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